
MAD-Cyphal

CAN Communication Protocol

Version upgraded record

Version Date Technician Modify Content

V1.0.0 2023/04/19 first edition

V1.0.0 2023/05/15 Added the description of register 05H to the content

V1.0.0 2023/08/17 Revised the BIT13, encoder setting, under the term of 4.3.4

Table of contents
1. Overview .. 2

2. Definition of technical terms ... 2

3. Introduction of protocol .. 2

3.1. Baud rate and sampling point .. 2

3.2. CAN-ID divided as per Cyphal standard ...2

3.2.1. CAN-ID split .. 2

This protocol is based on the Cyphal standard, and only uses the extended format data frame (29bit CAN-ID)for
communication. The Cyphal protocol divides the CAN-ID as follows. 2

3.3. Cyphal protocol data transmission specification ... 3

3.3.1. Single-frame transmission ..4

3.3.2. Multi-frame transmission ... 4

4. Cyphal protocol application ... 5

4.1. ESC function introduction ... 5

4.2. Supplier ID field usage Plan ... 5

4.3. Broadcast data type description .. 5

4.3.1. Command control.6144 (3 byte) ..5

4.3.2. Device ID address setting .. 6

4.3.3. Throttle transmission.[6152~6159] (7 byte) ..6

4.3.4. Information upload 6160 (6 byte) ... 7

4.3.5. Information upload 6161（7 byte） ... 7

4.3.6. Heartbeat packet.7509standard（6 byte） .. 7

4.4. Service data type description .. 8

4.4.1. Register read and write.256 ...8

4.4.2. Get node information.430standard ..9

4.4.3. Node command control 435standard .. 9

4.5. Part of the function description of the register table ..10

4.5.1. CAN baud rate setting ..10

5. References .. 10

6. Appendix 1 - Reference Procedures .. 11

7. Appendix 2 - Register List ... 12

2

1. Overview
This protocol is based on the CAN 2.0B standard. It uses extended format data frames for data interaction, and the Cyphal protocol is

used to manage CAN transmission to achieve single-point/overall data transmission. For example, register read and write, message

upload, data fast write or command control, etc.

Remark: extended format data frames belongs to traditional CAN, which can transmit up to 8 data.

2. Definition of technical terms
Table 1 Terminology

CAN Controller Area Network，to control LAN communication protocol

CAN-ID Controller Area Network Identifier

Cyphal CAN application protocol. Please refer to the official website https://opencyphal.org/

Node-ID Device number on the CAN bus

Remark：

1). Except for CRC which adopts big-endian format, all other data types use little-endian format.

2). The ID of the ESC starts from 0x10. The broadcast receiving range of the ESC is nodes 0~0x0f, 126 and 127. The broadcast

messages of other nodes are all ignored.

3). On the CAN bus, all connected devices can communicate with each other

3. Introduction of protocol

3.1. Baud rate and sampling point
Table 2 Baud rate and reference sampling point

Baud rate Bit time Reference sampling point Recommended number of ESCs

1000K 1.00us 75.0% ESC’s Qty.≦16

800K 1.25us 80.0% ESC’s Qty.≦16

500K(default) 2.00us 87.5% ESC’s Qty.≦8

250K 4.00us 87.5% ESC’s Qty.≦4

Remark:

1). It is recommended that the bus load rate not exceed 70%. The number of ESCs corresponding to different baud rates in the above

table is only for reference. The actual situation also needs to be determined according to the refresh rate of the throttle configured by

the user and the upload rate of the operating parameters.

3.2. CAN-ID divided as per Cyphal standard

3.2.1. CAN-ID split

This protocol is based on the Cyphal standard, and only uses the extended format data frame (29bit CAN-ID)for communication. The

Cyphal protocol divides the CAN-ID as follows.

3

Table 3 CAN ID bit fifields

Bit field definition Width Description

Priority 3

According to CAN2.0B, the smaller the CAN-ID, the

higher the priority when the bus competes for

transmission, and the 3-bit width forms 8 priorities.

highest priority: 0

Lowest priority: 7

Broadcast: Multi-frame transmission Priority is the

same

Service: The priority of multi-frame transmission is

the same, and both the requester and the responder

have the same requirements.

0 = Exceptional

1 = Immediate

2 = Fast

3 = High

4 = Nominal

5 = Low

6 = Slow

7 = Optional

Service,not message 1 Service frame ID
0: non-service frame

1: service frame

Anonymous 1

Anonymous transmission frame identification,

anonymous transmission is not used temporarily,

and will not be described later

0: broadcast message frame

1: Anonymous message frame, mainly

used for plug-and-play identification

management

Subject-ID 13
Broadcast frame message type identification,

range [0~8191]

[0000, 6143]: spare/other

[6144, 7167]: user defined area

[7168, 8191]: standard area

Source node-ID 6 Currently, the node-ID number of the sender of the CAN frame (0~127)

Request,not

response
1

Data request and response identification of the

service frame

0: Response back to service data request

1: service data request

Service-ID 9
service frame message type identification，

range [0~511]

[000, 255]: spare/other

[256, 383]: user defined area

[384, 511]: standard area

Destination node-ID 7 Currently, the receiver node-ID number of the CAN frame (0~127)

R
R = reserve, currently not used, reserved as a specific value (as shown in the CAN-ID split

diagram)

3.3. Cyphal protocol data transmission specification
The Cyphal protocol stipulates that a CAN data segment of a frame is divided into a Transfer payload segment and a Tail byte

segment. Since the CAN2.0B protocol stipulates that a maximum of 8 bytes can be transmitted at a time, in the Cyphal protocol, the

last control byte Tail byte is removed, and then a maximum of 7 effective bytes can be transmitted.

4

Table 4 tail byte split description

Tail byte domain name Single-frame transfer Multi-frame transmission

Start of transfer The value is always 1 The first frame is 1, the other frames are 0

End of transfer The value is always 1 Other frames are 0, the last frame is 1

Toggle The value is always 1

The 1st frame is 1, the 2nd frame is 0, the 3rd frame is

restored to 1, and the cycle is repeated between 1

and 0 (1, 0, 1, 0...) so-call flip bit, until the last frame

Transfer ID

For the same Type ID, every time a complete data packet is transmitted, the Transfer ID will increase by

1, and it will change cyclically from 0 to 31

Note: Multi-frame transmission only counts as one data packet from the beginning to the end! Each

Type ID has its own Transfer ID!

3.3.1. Single-frame transmission

If the information transmitted at one time does not exceed 7 bytes, one frame of CAN data packet can be used to complete the

transmission, which is called single frame transmission.

3.3.2. Multi-frame transmission

When the transmitted data exceeds 7 bytes, it should be converted to multi-frame CAN data packet transmission. The need for

multi-frame transmission introduces two new concepts.

 CRC and flip bit (the flip bit is involved in the above table 4)

If there are M (M>7) bytes for multi-frame transmission, perform 16-bit CRC calculation on the M data, put the two-byte CRC after M

bytes, and form N = M+2 bytes data packets, and then pack/unpack the multi-frame transmission protocol as shown in the figure

below.

Remark：

1). The Cyphal protocol suggests that single-frame transmission has higher data throughput and lower latency than multi-frame

transmission. Therefore, single-frame transmission is given priority in design.

2). CRC calculation method (C program) is placed in Appendix 1

5

4. Cyphal protocol application
4.1. ESC function introduction
 Send a heartbeat packet (including node status and other messages) about every 1s after power-on

 Save parameters/emergency stop/factory settings/upgrade control/node shutdown/node restart

 Register parameter reading and writing

 Data message upload
 ...

4.2. Supplier ID field usage Plan
The Cyphal protocol stipulates that the broadcast frame provider can customize the ID range [6144~7167], a total of 1023 user data

channels

The Cyphal protocol stipulates that the service frame provider can customize the ID range [256~383], a total of 127 user data

channels

Table 5 Supplier ID field planning table

Note: The "Standard" in the subscript refers to the standard fixed instruction adopted. Those without a subscript are

manufacturer-defined

4.3. Broadcast data type description

4.3.1. Command control.6144 (3 byte)

Frame type SUB-ID command NodeId reserve, fill0

broadcast frame 6144 Payload[0] [1] [2]

Remark: Priority = Fast

 command：

 0: Disable all information uploads

 1: Disable all information uploads, excluding heartbeat packets

 10: Manually trigger a heartbeat packet (prohibit all information upload invalid)

 100:Enable ESC automatic upload

 FEH: All ESCs restart

 Node Id：

>127: All ESCs respond

Others: Corresponding ESC response

Frame type Function ID field
ID segment

length
Function Description

Broadcast

overall command control [6144~6151] 8 All devices connected to the bus respond uniformly

throttle refresh [6152~6159] 8 Throttle transmission, throttle transmission adopts single frame mode

information upload [6160~6167] 8
The components connected to the node, its voltage/current/rotational speed

and other data upload

heartbeat packet [7509]standard 1 After connecting to the node, upload the heartbeat status information regularly

Serve

Register read and write [256] 1
Register reading and writing, all parameters of the ESC can be read and written

on this channel

node information [430]Standard 1
Used to view the version number of the ESC and the unique code information of

the ESC

Service Order Control [435]Standard 1 ESC command control, save parameters, reset...

6

4.3.2. Device ID address setting

frame type SUB-ID cmd NodeId

broadcast frame 6145 Payload[0] Payload[1]

Remark:Priority = Nominal

 command：

 0: Set the new address of the node (it can only be set when the ESC is not working.

After the setting is successful, it will restart and use the set address).

 1: Cancel the address setting, if it has an address encoder, use the address encoder

value, the parameter NodeId is invalid

 NodeId：

Set a new ID address, value

range [0x10~0x10+31]

4.3.3. Throttle transmission.[6152~6159] (7 byte)

Throttle data transmission frame (the first group of throttle, including 4 throttle data, transmitted to 1~4 axis ESC)

Frame type SUB-ID Throttle data

broadcast frame 6152 Payload[0,6]

Throttle data transmission frame (the second group of throttle, including 4 throttle data, transmitted to 5~8 axis ESC)

Frame type SUB-ID Throttle data

broadcast frame 6153 Payload[0,6]

Throttle data transmission frame (the third group of throttle, including 4 throttle data, transmitted to the 9~12 axis ESC)

Frame type SUB-ID Throttle data

broadcast frame 6154 Payload[0,6]

....By analogy, 8 groups of throttles can be sent

 Remark: Priority = High

1) The nodeId of the throttle sender must be less than 0x10, or equal to 126 or 127, and the others will not be recognized

2) The number of throttles sent depends on the user's usage, but each set of throttles is defined as 7 throttle data.

3) Each set of throttle occupies 14 bits, that is, int14, and the highest bit is the sign bit. At present, the throttle value can only be

greater than or equal to 0, and if it is less than 0, it will be discarded. If the transmitted throttle value has been out of range, it will

report a throttle loss fault. Since only 7 bytes (56bit) can be transmitted at most each time, we give the method of parsing 56bit data

into 4 pieces of 14bit throttle data as follows

Throttle to be sent HEX [0x123, 0x234, 0x345, 0x456]
Delete the upper two bits of each 16-bit throttle

Binary throttle（BIN） [00000001_00100011, 00000010_00110100,00000011_01000101,00000100_]
Split the upper 6 digits of the last throttle into 00,01,00 and insert them into the upper two digits of the first 3 throttles.

Binary throttle（BIN） [00000001_00100011, 01000010_00110100,00000011_01000101,00000100_]
Split the throttle by 8 bits to get 7 bytes of CAN format data,

Binary throttle（BIN） [00100011,00000001,00110100,01000010,01000101,00000011,]
CAN data（HEX） [0x23, 0x01, 0x34, 0x42, 0x45, 0x03, 0x56]
See Appendix 1 for splitting the C program
void x_MakeThrot(uint16_t *throt,uint8_t *throtOut)

4) The minimum refresh cycle of the CAN throttle is 1ms, and the adjustment frequency of 1Khz is supported, and the throttle value

ranges from 0 to 2048

5) CAN throttle

For throttle package, please refer to the appendix

7

4.3.4. Information upload 6160 (6 byte)

Frame type SUB-ID Electrical speed bus current Operating status

broadcast 6160 Payload[0,1] [2,3] [4,5]

 Remark: Priority = Low

 Electrical speed: data type/uint16_t, value range/0 ~ 65535, unit/0.1Hz

 Bus current: data type/int16_t, value range/-32768 ~ +32767, unit/0.1A,

 Running Status: The current running status of the system

 The information upload cycle defaults to 25ms, and the automatic upload is turned on when the machine is turned on, and the

upload can be turned off by calling the overall command control .6144.

Operating status table

Bit Bit function Bit description Bit Bit function Bit description

BIT0 overvoltage 0: normal, 1: overvoltage BIT8 Stall 0: normal, 1: stalled

BIT1 undervoltage 0: normal, 1: undervoltage BIT9 MOS open circuit 0: normal, 1: open circuit

BIT2 overcurrent 0: normal, 1: overcurrent BIT10 MOS short circuit 0: normal, 1: short circuit

BIT3 Throttle signal source 0:PWM，1:CAN BIT11 motor over temperature
0: normal, 1: over

temperature

BIT4 throttle lost 0: normal, 1: lost BIT12 Abnormal current sampling 0: normal, 1: abnormal

BIT5 Throttle not reset to 0 0: reset to zero, 1: not reset to zero BIT13 Encoder setting 0: soft setting, 1: code disc

BIT6 MOS over temperature 0: normal, 1: over temperature BIT14 Motor three-phase line status 0: normal, 1: short circuit

BIT7 capacitance over temperature 0: normal, 1: over temperature BIT15 motor running status 0: stop, 1: running

4.3.5. Information upload 6161（7 byte）

Frame type SUB-ID output throttle bus voltage Temperature

MOS Capacitance Motor

broadcast 6161 Payload[0,1] [2,3] [4] [5] [6]

 Remark:Priority = Low

Output throttle: The throttle value received by the current ESC

Bus voltage: data type/int16_t, value range/-32768 ~ +32767, unit/0.1V,

Temperature: temperature value = transmission data -40, for example, transmission temperature data is 23, then the

corresponding temperature is 23-40 = -17, unit/℃

 The information upload cycle defaults to 50ms, and the automatic upload is turned on when the device is turned on, and the

upload can be turned off by calling the global command control .6144.

4.3.6. Heartbeat packet.7509standard（6 byte）

Frame type SUB-ID Power-on time Node health status Node current mode User-defined

broadcast 7509 Payload[0,3] [4] [5] [6]

 Remark: Priority = Nominal. The heartbeat packet is the standard Cyphal protocol

 Power-on time: record the time from power-on to the present, unit/sec

Health status Current mode User defined (reserved)

:0, normal mode :0, operating mode

:1, System parameter failure :1, initialization mode

:2, component major failure :2, sensor calibration mode

:3, system serious failure :3, Firmware update mode

8

4.4. Service data type description

4.4.1. Register read and write.256

Request : Type A, read (2 byte)
Frame type SER-ID Operation command Register index

service → request 256 Payload[0] [1]

Request :Type B, write(4 byte)
Frame type SER-ID Operation command Register index Register value

service → request 256 Payload[0] [1] [2,3]

 Remark: Priority >Fast

Operation command

Value = 0 read register value

Value = 1 Read all parameters of the register

Value = 2 write register value

 Index, the operation index address of the register.

Response:Type 1, other errors (2byte)
Frame type SER-ID Operating state Index

service ← response 256 Payload[0] [1]

Response:Type 2, return register value (4byte)
Frame type SER-ID Operating state Index Register value

service ← response 256 Payload[0] [1] [2,3]

Response:Type 3, returns all parameters of the register (23byte)
Frame type SER-ID Operating state Index Register value Name Defaults Lower limit Upper limit Properties

service ← response 256 Payload[0] [1] [2,3] [4,15] [16,17] [18,19] [20,21] [22]

Remark:

Operating state description

Operating return value Operation status return value description return frame type

Value = 10H Successful operation Type 2 or Type 3

Value = 11H Register index does not exist Type 1, the return index is the maximum

index supported by the register

Value = 12H Operation attribute error, such as read-only register write

value or unreadable and unwritable

Type 1

Value = 13H The written value is out of range, for example, the value

written to the register exceeds the upper and lower limits

Type 2

 Register value: the current value of the register

 Name: The corresponding 12-bit register name, the characters used in the register name are Cyphal protocol standard

characters

 Default value: If it is a power-off memory register, it represents the value of restoring the factory settings, and others represent

the value of the initial power-on

 Lower limit: the minimum value that can be set by the register value

 Upper limit: the maximum value that can be set by the register value

 Properties: Properties include

Bit0 Bit1 Bit2 Bit3~7

0: readable,

1: unreadable

0: not writable,

1: writable

0: reset parameters are lost,

1: reset parameters are not lost

reserve

9

4.4.2. Get node information.430standard

Request :(0 byte)
Frame type SER-ID

service → request 430

Response:(33+N byte)
Frame type SER-ID Protocol version (2b) Hardwre version (2b) Software version (2b) Software signature (reserved 8b)

service ← response 430 Payload[0,1] [2,3] [4,5] [6,13]

Device unique code(16b) Device model（Nb） Other（reserved 2b）

[14,29] [30,30+N] [31+N,32+N]

 Remark:Priority >Fast，This command is a standard command, you can view the protocol document uavcan.node.GetInfo

Protocol version The number 100 means V1.0.0, and so on for other versions

Hardware version The number 100 means V1.0.0, and so on for other versions

Software version The number 100 means V1.0.0, and so on for other versions

software signature Program hash value or other verification, temporarily reserved, filled with 0

Device unique code Among them, the first 12 bits are the UID of the chip, and the last 4 bits are reserved and filled with 0

Device model The first byte of the device name indicates the length, and the latter indicates the model content

Other It is the length of two groups of characters, it is not used temporarily, and it is filled with 0

4.4.3. Node command control 435standard

Request:(3 . . . 258 byte)
Frame type SER-ID Command(2b) parameter(Nb)(0<N<255)

Service → request 435 [0,1] [2,2+N]

 Remark: Priority >=Exceptional, This command is a standard command, you can view the protocol document

uavcan.node.ExecuteCommand

Command

STORE_PERSISTENT_STATES = 65530

1. Let the node save the data. If the register to be operated is a power-down save

type and you want to save the data permanently, you must perform this operation.

2. Saving data must be done when the node stops working.

EMERGENCY_STOP = 65531 Reserved

FACTORY_RESET = 65532
The node restores the factory settings, and the settings are successfully powered

off to take effect

BEGIN_SOFTWARE_UPDATE = 65533

1. Let the node enter the firmware upgrade mode, and only when the node exits

the normal operation can it respond correctly

2. When the node receives the upgrade instruction, if the node is not working, it

will enter the pre-upgrade state.

3. The upgrade mode is irreversible, so the docking password is required and

stored in the paramter

POWER_OFF = 65534 Reserved

RESTART = 65535

Restarting a node can be executed in any situation, and no information will be

returned. If the requester wants to know whether the node is restarted, it can be

judged by querying the continuous running time in the node status.

10

Response: (1byte)
Frame type SER-ID status

Service ← response 435 Payload[0]

Remark: this command is a standard command, you can view the protocol document uavcan.node.ExecuteCommand

 State

SUCCESS = 0 The operation is successful, restarting will not return the command

FAILURE = 1 Unable to start or ineffective operation

BAD_COMMAND = 3 This command does not support

BAD_PARAMETER = 4 Parameter and command do not match

BAD_STATE = 5 The current state of the node does not allow the execution of the command

INTERNAL_ERROR An accident occurred while operating

4.5. Part of the function description of the register table
All the values of the register are 16-bit, and the name is fixed at 12-bit. If the value is less than 12-bit, it will be filled with spaces, and if

the name is too long, it will be abbreviated.

4.5.1. CAN baud rate setting

The option can be set after writing the corresponding baud rate to the register address 04H. It must be noted that after the setting is

completed, the command = 65530 of the service command control.435 will be called to save the power-off.

5. References
《Cyphal_Specification.pdf》

11

6. Appendix 1 - Reference Procedures
/***/

/*-------CRC Calculate the correlation function--*/
uint16_t crcAddByte(uint16_t crc_val, uint8_t byte)

{

crc_val ^= (uint16_t) ((uint16_t) (byte) << 8U);

for (uint8_t j = 0; j < 8; j++)

{

if (crc_val & 0x8000U){crc_val = (uint16_t) ((uint16_t) (crc_val << 1U) ^ 0x1021U);}

else {crc_val = (uint16_t) (crc_val << 1U);}

}

return crc_val;

}

uint16_t crcAdd(uint16_t crc_val, const uint8_t* bytes, uint16_t len)

{

while (len--){crc_val = crcAddByte(crc_val, *bytes++);}

return crc_val;

}

uint16_t crc_check(const uint8_t *data1, uint16_t length)

{

return crcAdd(0xffff,data1,length);

}

/***/

/*----------Throttle Packing Method Demonstration---*/
void x_MakeThrot(uint16_t *throt,uint8_t *throtOut)

{

/*

Note: the length of the pointer throt must be more than 4

the length of the pointer throtOut must be more than 8

*/

/* Remove the upper two digits */

throt[0] &= 0x3fffu;

throt[1] &= 0x3fffu;

throt[2] &= 0x3fffu;

throt[3] &= 0x3fffu;

/* Split the upper 6 bits of the last throttle */

throt[0] |= ((throt[3]<<2)&0xc000u);

throt[1] |= ((throt[3]<<4)&0xc000u);

throt[2] |= ((throt[3]<<6)&0xc000u);

/* Copy data */

*(uint16_t *)(&throtOut[0]) = throt[0];

*(uint16_t *)(&throtOut[2]) = throt[1];

*(uint16_t *)(&throtOut[4]) = throt[2];

*(uint16_t *)(&throtOut[6]) = throt[3];

}

12

7 Appendix 2 - Register List
No Value Name Defaults lower limit upper limit R/W/E Description

00

H
- PR-version 100 0 0xffff R Protocol version number, 100 means V1.0.0

01

H
- HW-version 100 0 0xffff R Hardware version number, 100 means V1.0.0

02

H
- SF-version 100 0 0xffff R Software version number, 100 means V1.0.0

03

H
- UploadCtrBit 0xffff 0 0xffff R/W

位 bit Remark: 0 uniformly means off

BIT0 1: Open the heartbeat package. 7509

BIT1 1: enable information upload. 6160

BIT2 1: enable information upload. 6161

04

H
- CanBaudRate 5 4 7 R/W/E

CANbaud rate

4:250k

5:500K(default)

6:800k

7:1000K

05

H
- UpdaterProc 0 0 10 R

Query the upgrade progress

Others: non-upgrade process

0x0020: waiting for communication area

program

0x0030: copying communication area program

0x0040: waiting to download the program in the

application area

0x00A0: COM area upgraded successfully

0x00A1: APP area upgraded successfully

0x00E0: upgrade failed, the program size

exceeds the range

0x00E1: upgrade failed, unique code

verification failed

0c

H
- ExCommand 0 0 0xffff R

Store the instruction updated by

uavcan.node.ExecuteCommand,

0d

H
- HB.health 0 0 3 R

Node status, see <heartbeat packet.7509>

chapter for details
0e

H
- HB.mode 1 0 3 R

0fH - HB.VendorSta 0 0 255 R

10

H
- throtSet 0 0 2048 R/W

Throttle signal, in addition to updating by

broadcast, can also be updated by reading and

writing registers

11

H
- throtCrtOut 0 0 2048 R

Throttle signal, in addition to updating by

broadcast, can also be updated by reading and

writing registers

12

H
- throtMode 0 0 1 R/W 0 = CAN throttle, 1 = PWM throttle

13

H
- eleFrequency 0 0 0xffff R Electrical frequency of motor rotor, unit/0.1Hz

13

18

H
- Volt_Bus 0 0 0xffff R Bus voltage, unit/0.1V

20

H
- IBus 0 -32768 +32767 R Bus current, unit/0.1A

30

H
- mos-Tem 75 0 255 R

MOS temperature, subtract 40 to get the real

temperature

31

H
- cap-Tem 75 0 255 R

Capacitor temperature, subtract 40 to get the

real temperature

32

H
- mot-Tem 75 0 255 R

Motor temperature, subtract 40 to get the real

temperature

33

H
- runSta 0 0 0xffff R

Operating status code,

Please refer to <information upload.6160>

chapter for bit splitting details

Remark: R/W/E means readable/writable/power-down save attribute

