
CiA 201 to 207 Version 1.1

CAN Application

Layer for industrial
applications

 ! CAN in Automation (CiA) e. V.

Contents

* CAN in the OSI Reference Model CiA/DS201

* CMS Service Specification CiA/DS202-1

* CMS protocol Specification CiA/DS202-2

* CMS Encoding Rules CiA/DS202-3

* NMT Service Specification CiA/DS203-1

* NMT Protocol Specification CiA/DS203-2

* DBT Service Specification CiA/DS204-1

* DBT Protocol Specification CiA/DS204-2

* LMT Service Specification CiA/DS205-1

* LMT Protocol Specification CiA/DS205-2

* Recommended Standard CAL Module Data Sheet CiA/DS206

* Application Layer Naming Conventions CiA/DS207

History

Date Document Changes

Feb 96 DS202-1 - chapter 4 'Data Types' deleted; numbering of
chapter 5 to 7 changed to 4 to 6;

- definition of segmented remote services of
domains changed; in remote result parameter
'success' becomes mandatory; parameter
'failure' deleted; service description for case of
a failure;

- paragraph 3.4 'CMS Data Types' changed

Feb 96 DS202-3 - document completely revised;

- simplyfication of encoding rules definitions;

new extended data types added

Feb 96 DS203-2 - node connect protocol: definition of parameter

'Node-ID' changed; parameter 'a' (abortion flag)
added; definition of error codes changed;
description of cs 1 and 4 changed;

- added paragraph 3.4 'Usage of Command
Specifiers'

Feb 96 DS204-1 - service ´create user definition´: changed the
definition of a ´free COB definition´

Feb 96 DS205-1 - service 'activate bit timing parameters':

DS205-2 description of parameter 'switch-delay'
changed;

- service ´configure bit timing parameters´:
value ´0´ for parameter table_selector now
references the CiA standard bit timing
parameters as defined in DS102;

- added services and protocols to identifiy nodes
with their LMT Address

Feb 96 DS205-2 - paragraph 5.6 renumbered to 5.5
(5.5 didn´t exist)

Feb 96 DS206 - new document

Feb 96 DS207 - NMT object name syntax: definition of 'NMT-
Address' changed

General information on licensing and patents

CAN in AUTOMATION (CiA) calls attention to the possibility that some of the elements of this
CiA specification may be subject of patent rights. CiA shall not be responsible for identifying
any or all such patent rights.

Because this specification is licensed free of charge, there is no warranty for this
specification, to the extent permitted by applicable law. Except when otherwise stated in
writing the copyright holder and/or other parties provide this specification “as is” without
warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to the
correctness and completeness of the specification is with you. Should this specification prove
failures, you assume the cost of all necessary servicing, repair or correction.

Trademarks

CANopen® and CiA® are registered community trademarks of CAN in Automation. The use is
restricted for CiA members or owners of CANopen vendor ID. More detailed terms for the use
are available from CiA.

© CiA 1997

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm,
without permission in writing from CiA at the address below.

CAN in Automation e. V.
Kontumazgarten 3
DE - 90429 Nuremberg, Germany

Tel.: +49-911-928819-0
Fax: +49-911-928819-79
Url: www.can-cia.org

Email: headquarters@can-cia.org

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS201

February 1996

CAN in the OSI Reference Model

February 1996

CAN in the OSI Reference Model

- DS201 p. 2-

1. SCOPE

This document contains a description of the CAN Reference Model. This document is

part of a set of documents that standardize the CAN Application Layer for Industrial

Applications.

2. REFERENCES

/1/: ISO 7498: 1984, Information Processing Systems - Open Systems Interconnection

- Basic Reference Model

/2/: ISO 11898: Road Vehicles, Interchange of digital information

- Controller Area Network (CAN) for high-speed communication, November 1993

/3/: CiA/DS 102-1, CAN Physical Layer for Industrial Applications - Part 1: Two

- Wire Differential Transmission

/4/: Robert Bosch GmbH, CAN Specification 2.0 Part B, September 1991

3. DEFINITIONS, ACRONYMS AND ABBREVIATIONS

CAL:

CAN Application Layer. The application layer for CAN as specified by CiA.

CAN:

Controller Area Network. A network originally defined for use as a communication

network for control applications in automobiles.

CMS:

CAN based Message Specification. One of the service elements of the application layer

in the CAN Reference Model. CMS is a language that can describe how the functionality of a

module can be accessed at its CAN interface.

COB:

Communication Object. A unit of transportation in a CAN Network. Data must be sent

across a CAN Network inside a COB. There are 2032 different COB's in a CAN Network. A

COB can contain at most 8 bytes of data. In /4/, the possibility of having more than 2032

COB's is described. The CAN Application Layer as specified by CiA can be extended in the

future in a compatible way to include this possibility.

COB-ID:

Each COB is uniquely identified in a CAN Network by a number called the COB

Identifier (COB-ID). The COB-ID determines the priority of that COB for the MAC sub-layer.

February 1996

CAN in the OSI Reference Model

- DS201 p. 3 -

Remote COB:

A COB whose transmission can be requested by another module.

DBT:

COB-ID Distributor. One of the service elements of the application layer in the CAN

Reference Model. It´s the responsability of the DBT to distribute COB-ID's to COB's that are

used by the CMS service element.

LME:

Layer Management Entity. This entity serves to configure parameters for each of the

layers of the CAN Reference Model.

LMT:

Layer Management. One of the service elements of the application layer in the CAN

Reference Model. It serves to configure parameters of each of the layers in the CAN Reference

Model via the CAN network.

LLC:

Logical Link Control. One of the sub-layers of the Datalink Layer in the CAN

Reference Model that gives the user an interface that is independent from the underlying MAC

layer.

MAC:

Medium Acces Control. One of the sub-layers of the Datalink Layer in the CAN

Reference Model that controls who gets access to the medium to send a message.

MDI:

Medium Dependent Interface. One of the sub-layers of the Physical Layer in the CAN

Reference Model that specifies the mechanical and electrical interface between the medium and

a module.

NMT:

Network Management. One of the service elements of the application layer in the CAN

Reference Model. The NMT serves to configure, initialize, and handle errors in a CAN

network.

PLS:

Physical Layer Signalling. One of the sub-layers of the Physical Layer in the CAN

Reference Model that specifies the bit representation, timing and synchronization.

PMA:

Physical Medium Attachment. One of the sub-layers of the Physical Layer in the CAN

Reference Model that specifies the functional circuitry for bus line transmission/reception and

may provide means for failure detection.

February 1996

CAN in the OSI Reference Model

- DS201 p. 4-

4. THE CAN REFERENCE MODEL

The Controller Area Network (CAN) is a data communication network designed to fit

distributed real-time control applications. It was originally developed and applied by the

automotive industry to solve the cabling problem inside vehicles. However CAN also provides

good properties as a control network for industrial applications.

The purpose of the CAN Reference Model and its related service- and protocol

specifications is to make CAN an open network where modules from different suppliers can

cooperate in distributed applications.

4.1 Layered Architecture of CAN

The CAN Reference Model is a layered architecture to describe the functionality that

CAN offers to an application and is based on the OSI Reference Model. A basic knowledge of

the OSI Reference Model and its terminology is required to understand the CAN Reference

Model (see /1/).

There exists an ISO Standard /2/ for CAN. This draft specifies the Physical and Data

Link layer. The CAN Reference Model extends the MDI sublayer of the Physical Layer of /2/

to guarantuee interoperability on the medium. In addition to /2/, the CAN Reference Model

contains an Application Layer and a Layer Management Entity (LME) to guarantuee

interoperability between applications. The CAN Reference Model and its relation to the OSI

Reference Model are shown in Fig. 1.

February 1996

CAN in the OSI Reference Model

- DS201 p. 5 -

Application

Application

Presentation

Session

Transport

Network

Datalink

Physical

LLC

MAC

PLS (2)
PMA (2)

MDI (1)

DL-LME

PL-LME

AL-LME

LME
(1)

(1)

(1)=CiA Specification
(2)=ISO/IS 11898

service interface

peer-to-peer protocol

Fig. 1: The CAN Reference Model

(2)

The absence of the OSI layers 3-5 has the following reasons:

• NETWORK LAYER. There is no inter-networking or routing function in CAN:

every COB reaches all modules on the bus.

• TRANSPORT LAYER. The purpose of the Transport Layer in the OSI

Reference Model is to enable the upper layers to reliably transfer messages of

arbitrary length over unreliable networks by offering functions as

segmentation, sequencing, automatic retries and duplicate frame detection. For

distributed real-time control applications however, each message transfer

attempt stands on its own. This type of applications require high speed

transfer of short messages and need to know immediately whether a message

transfer attempt succeeded or failed to be able to respond in time. Since there is

no Network Layer and the Datalink Layer of CAN is considered to be reliable

enough, CAN applications do not need a Transport Layer to guarantuee a

reliable message transfer service. The Application Layer provides services to

enable those applications that need this, to send arbitrary length messages. This

leaves no functionality for a Transport Layer.

• SESSION LAYER. In distributed real-time control applications the concept of

sessions, synchronization points and roll-back mechanisms are usually not

February 1996

CAN in the OSI Reference Model

- DS201 p. 6-

supported. However, CIA may specify an optional CAN session layer in future

to support power reduction by a Standby Capability

• PRESENTATION LAYER. The presentation layer deals with the transfer of

application data and its meaning via the network. In the CAN Reference Model

all applications must use a structure consisting of basic data types to describe

their data. This data is encoded to a transfer syntax and it is assumed that all

applications know the meaning of the data a priori. This leaves no functionality

for the Presentation Layer.

4.2 The Physical Layer

The Physical Layer and its sub-layers are defined in /2/ and /3/.

4.3 The Datalink Layer

The Datalink Layer and its sub-layers are defined in /2/.

4.4 The Application Layer

The application layer is the interface between the data communication environment and

the application that uses that environment to cooperate with other applications. Together the

cooperating applications form a distributed application.

Message Oriented vs. Node Oriented

The Datalink Layer of CAN only offers a broadcast service of identified messages

(COB's). COB's are identified through a COB Identifier (COB-ID). Data is not sent to

applications on specific nodes in the network (node-oriented network). Each application itself

decides whether or not it will receive the data contained in a COB (message oriented).

In a CAN Network therefore, by definition the receiving applications are not known by

the transmitter. This message oriented nature of CAN is preserved in the services of the

Application Layer.

Application Layer Structure

The functionality that the application layer offers to an application is logically divided

over different service elements in the application layer. A service element offers a specific

functionality and all the related services (e.g File Transfer). These services are described in the

Service Specification of that service element.

Distributed applications interact by invoking services of a service element in the

application layer. To realize these services, this service element exchanges data via the CAN

February 1996

CAN in the OSI Reference Model

- DS201 p. 7 -

Network with (a) peer service element(s) via a protocol. This protocol is described in the

Protocol Specification of that service element.

February 1996

CAN in the OSI Reference Model

- DS201 p. 8-

Application Layer Service Primitives

Service primitives are the means by which the application and the application layer

interact. There are four different primitives:

• a request is issued by the application to the application layer to request a service

• an indication is issued by the application layer to the application to report an

internal event detected by the application layer or indicate that a service is

requested

• a response is issued by the application to the application layer to respond to a

previous received indication

• a confirm is issued by the application layer to the application to report on the

result of a previously issued request.

Application Layer Service Types

Fig. 2: Application Layer Service Types

A service type defines the primitives that are exchanged between the application

layer and the cooperating applications for a particular service of an application layer

service element. The service elements of the application layer of the CAN Reference

Model offer the following service types (see Fig. 2):

• A local service involves only the local service element. The application issues a

request to its local service element that executes the requested service without

communicating with peer service elements.

February 1996

CAN in the OSI Reference Model

- DS201 p. 9 -

• An unconfirmed service involves one or more peer service elements. The

application issues a request to its local service element. This request is

transferred to the peer service element(s) that each pass it to their application as

an indication. The result is not confirmed back. Note that in CAN it is unknown

by the transmitter which service elements will receive the request!

• A confirmed service can involve only one peer service element. The application

issues a request to its local service element. This request is transferred to the

peer service element that passes it to the other application as an indication. The

other application issues a response that is transferred to the originating service

element that passes it as a confirmation to the requesting application. Note that

in CAN it is unknown by the transmitter which service element will receive the

request!

• A provider initiated service involves only the local service element. The service

element (being the service provider) detects an event not solicited by a

requested service. This event is then indicated to the application.

Unconfirmed and confirmed services are collectively called remote services.

Application Layer Service Elements

The most important function of the application layer is to determine what an application

can do with the communication environment. The CAN application layer provides four

application layer service elements (see Fig. 3):

• CAN based Message Specification (CMS)

• Network Management (NMT)

• Distributor (DBT)

• Layer Management (LMT)

CMS offers an open, object oriented environment to design user applications. CMS

offers Variable-, Event-, and Domain objects to design and specify how the functionality of a

module can be accessed at its CAN interface. The Encoding Rules define how to encode and

decode application data into the transfer syntax and vv.

February 1996

CAN in the OSI Reference Model

- DS201 p. 10-

Fig. 3: The CAN Application Layer

CAN based

Message

Specification

Encoding Rules

Variables

Domains

Events

Master

Slave

Network

Management

Identifier

Distributor

Layer

Management

Master

Slave

Master

Slave

NMT offers an open object oriented environment to let one module (the NMT Master)

deal with the initialization and possible failures of the other modules (NMT Slaves).

The essential problem in defining an open CAN environment, is the distribution of the

COB Identifiers. A COB Identifier determines the priority for the MAC protocol of that COB.

Therefore, the value of the identifiers may not be fixed by the suppliers of the different CAN

modules since the systems integrator wants to have system-wide control over the priorities of

the COB's. The DBT offers a dynamic distribution of the identifiers by one module (the DBT

Master) to the other modules (DBT Slaves).

LMT offers the possibility to let one module (the LMT Master) control the settings of

certain layer parameters at another module (LMT Slave) via the CAN Network.

Application Layer Service Notation

This section defines the notation that is used in the service specifications of each service

element of the application layer.

• NOTE: These notations do not suggest or restrict possible implementations of

interfaces in either hardware or software. Hardware and software interface

descriptions are product specific and do not fall within the scope of the CiA

Standard on the CAN Application Layer for Industrial Applications.

In the description of an application layer service all parameters and their attributes of

the involved service primitives are specified. A parameter has the following attributes:

February 1996

CAN in the OSI Reference Model

- DS201 p. 11 -

• name. This attribute symbolically indicates the purpose of the parameter.

• usage. This attribute specifies whether the parameter is mandatory (i.e the

parameter must be present), optional (i.e the parameter may or may not be

present), or selection (i.e one parameter must be selected from a list of

parameters).

Indentation is used to indicate that a parameter is a sub-parameter of another

parameter. The usage of a sub-parameter is always dependent on the usage of the parameter it

appears under.

All this information is given in a tabular form. In the vertical direction the names of the

parameters are listed. In the horizontal direction, the service primitives are listed. If a

parameter is used in a certain service primitive, the value of the usage attribute is specified at

the cross point in the table. The indentation of the parameters is preserved in the location of

these values. All parameters that have the same level of indentation in the same column and

whose usage is 'selection' form a list from which one must be selected.

Parameter Request/Indication Response/Confirm

Par 1

 subpar 1

 subpar 2

Par 2

 subpar 3

 subpar 4

Optional

 selection

 selection

Mandatory

 mandatory

 optional

Table 1: Application Layer Service Notation

In the example of Table 1, Par1 is optional for the request and indication primitives. It

has a list of sub-parameters: either subpar1 or subpar2 must be present if and only if Par1 is

present. The parameters Par2 and subpar3 are mandatory for the response and confirm

primitives. Subpar4 may be left out.

Naming Conventions

The service elements of the Application Layer use objects to model their functionality.

Through the application layer services, an application can create instances of these objects.

Each instance has a name. To syntax of these names must be according to the Application

Layer Naming Conventions.

February 1996

CAN in the OSI Reference Model

- DS201 p. 12-

4.5 The Layer Management Entity

The Layer Management Entity (LME) is an entity that allows an application to control

the settings of layer parameters. The values can originate from the application itself or from the

application on another module through the LMT service element. Within the LME, each layer

has its own specific layer management entity, see Fig. 1. Note that there is no LME protocol

since all LME services are local.

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS202-1

February 1996

CMS Service Specification

February 1996

CMS Service Specification

- DS202-1 p. 2 -

1. SCOPE

This document contains the service specification of the CAN based Message

Specification (CMS). CMS is part of the CAN Application Layer. This document is part of a

set of documents that standardize the CAN Application Layer for Industrial Applications.

2. REFERENCES

/1/: CiA/DS201, CAN Reference Model

/2/: CiA/DS202-2, CMS Protocol Specification

/3/: CiA/DS202-3, CMS Data Types and Encoding Rules

/4/: CiA/DS207, Application Layer Naming Conventions

3. GENERAL DESCRIPTION

3.1 CMS Perspective

CMS is one of the application layer service entities of the CAN Reference Model, see /1/.

3.2 CMS Objects and Services

CMS is a language to specify what COB's a module uses and how they are formatted.

CMS can describe all CAN layer 2 features. This means also that existing applications can be

described in CMS. Furthermore CMS offers the application a possibility to model its behaviour

in the form of objects and remote services on these objects. This allows other applications to

cooperate with it by executing these services that CMS supports on these objects. The different

service types and primitives are defined in /1/. The notation that is used to describe the CMS

Services is also explained in /1/.

3.3 CMS Clients and Servers

An example is given in fig. 1 where CMS is used to model the control of a light switch.

The server of the switch "physically" interacts with the switch to put on the light. The server

"translates" this behaviour into the CMS language e.g a CMS variable with access

February 1996

CMS Service Specification

- DS202-1 p. 3 -

type 'Write_Only' and data type BOOLEAN. The client "logically" interacts with the switch by

using the remote CMS 'Write Variable' service.

CMS allows for an object to have one or more servers and zero or more clients,

depending on what the object models.

CMS

Fig. 1: A CMS Model for a light switch

3.4 CMS Data Types

In order to give a server sufficient information on what he has to do, the client may

have to exchange data with the server, e.g the required and current position of the valve. CMS

models this by the concept of data types. CMS defines a number of basic types such as

INTEGER(5). It is also possible to construct a compound type by collecting basic types in an

ARRAY or a STRUCTURE. CMS defines also a number of extended data types.

CMS defines a transfer syntax that describes how values of a particular data type have

to be transmitted over the CAN network. The data types and transfer syntax is described in the

CMS Data Types and Encoding Rules, see /3/.

3.5 CMS Object Priorities

The priority of a CMS object indicates its importance relative to other CMS objects and

is used as an arbitration value by the Medium Access Control of CAN. CMS defines eight

priorities in the range [0, 7]. 0 is the highest, 7 the lowest priority.

February 1996

CMS Service Specification

- DS202-1 p. 4 -

Priorities can be assigned by the application or the Distributor Service Element (see

/1/). In case the Distributor Service Element assigns a priority, the Network Management

Service Element (see /1/) controls when the assignment takes places.

February 1996

CMS Service Specification

- DS202-1 p. 5 -

3.6 CMS Object Inhibit Times

To guarantee that no starvation on the network occurs for CMS objects with low

priorities, CMS objects can be assigned an inhibit time. The inhibit-time of a CMS object

defines the minimum time that has to elapse between two consecutive invocations of a CMS

remote service for that CMS object.

Inhibit-times can be assigned by the application or the Distributor Service Element (see

/1/). In case the Distributor Service Element assigns an inhibit-time, the Network Management

Service Element (see /1/) controls when the assignment takes places.

3.7 CMS Service Descriptions

The CMS services are described in a tabular form that contains the parameters of each

service primitive that is defined for that service. The primitives that are defined for a particular

service determine the service type (e.g unconfirmed, confirmed, etc.). How to interprete the

tabular form and what service types exist is defined in /1/. In the service descriptions, [a, b]

denotes the range of integers from a to b with a and b included. If a > b, the range is empty.

All services assume that no failures occur in the Data Link and Physical Layer of the

CAN network. These failures are resolved by the Network Management Service Element, see

/1/.

CMS executes a protocol to implement the services on a CMS object. All protocols are

defined in /2/. Each protocol needs one or two COB's to be able to transmit and receive data

over the CAN network. This document specifies for each CMS service the used COB's and

their attributes:

• the COB-Class. There are 8 COB-Classes. A COB-Class relates the number of

(remote) receivers and (remote) transmitters for that COB. The Distributor

COB Class #receivers #transmitters

0

1

2

3

4

5

6

7

0 .. 1

 1

 > 1

 > 0

0 .. 1

 1

 > 1

 > 0

0 .. 1

0 .. 1

0 .. 1

0 .. 1

 1

 1

 1

 1

February 1996

CMS Service Specification

- DS202-1 p. 6 -

Service Element checks for each COB whether the total number of (remote)

transmitters and (remote) receivers matches the COB-Class.

• the COB-type for both the server- and client:

rx = receives a COB

tx = transmits a COB

RTR-rx = receives the data of a remote COB

RTR-tx = transmits the data of a remote COB

• the COB-length. If '*' is specified it means that the data length is determined by

the CMS Encoding Rules (see /3/), the data- and error type attribute of the CMS

object, and the CMS protocol that this COB is used for (see /2/). If a number is

specified it means that the COB has a fixed length.

February 1996

CMS Service Specification

- DS202-1 p. 7 -

4. VARIABLES

4.1 Attributes

The following attributes are defined for variables:

- name: see /4/

- user_type: one of the values {Client, Server}

- priority: a value in the range [0, 7]

- inhibit-time: n*100 usec, n >> 0

- data_type: see /3/

- error_type: see /3/

- class: one of the values {Basic, Multiplexed}

- access_type: one of the values {Read_Only, Write_Only, Read_Write}

A variable whose class is 'Basic' is called a basic variable. A variable whose class is

'Multiplexed' is called a multiplexed variable. A multiplexed variable is multiplexed with other

multiplexed variables into a variable set.

The following attributes are only defined for multiplexed variables:

- var_set_name: see /4/

- mutiplexor: a value in the range [0, 127]

The multiplexor is a natural number that uniquely identifies the variable within the

variable set. Multiplexed variables inherit the values of the user_type, access_type, priority, and

inhibit-time attributes from the corresponding attributes of the variable set. Hence, all

multiplexed variables within one variable set have the same value for these attributes. The

following attributes are defined for variable sets:

- name: see /4/

- user_type: one of the values {Client, Server}

- priority: a value in the range [0, 7]

- inhibit-time: n*100 usec, n >> 0

- access_type: one of the values {Read_Only, Write_Only, Read_Write}

4.2 Usage

The access type of a variable is seen from the point of view of the client. Variables with

access_type 'Read_Only' can be used by a client only to collect data. For basic variables the

collected data will be the data that was set by the server in the last 'update variable'

February 1996

CMS Service Specification

- DS202-1 p. 8 -

service it executed. Data from previous updates is lost. For multiplexed variables the server has

to supply the data when requested by the client.

Variables with access_type 'Write_Only' can be used by a client to request one or more

servers to execute a command. The client will not know the result of the command execution.

Variables with access_type 'Read_Write' can be used by a client to collect the 'current

data' from the server (read service) or to request a server to execute a command and be

informed about the result of the command execution (write service).

Variable sets can be used to "multiplex" several variables. All these multiplexed

variables will then be mapped onto the COB's that are used by that variable set. This reduces

the number of COB's. Within a variable set the variables are identified by a unique

"multiplexor".

4.3 Local Services

Define Variable

This service creates a variable with the requested attributes. Var_set_name must have

been defined as a variable set. The attributes must not cause the data length of the used COB's

to overflow the maximum.

Parameter Request

Argument

 var_name

 data_type

 error_type

 class

 basic_var

 user_type

 acess_type

 priority

 inhibit-time

 mux_var

 var_set_name

 multiplexor

Mandatory

 mandatory

 mandatory

 optional

 mandatory

 selection

 mandatory

 mandatory

 optional

 optional

 selection

 mandatory

 mandatory

February 1996

CMS Service Specification

- DS202-1 p. 9 -

• NOTE: The cooperating applications are responsible for using consistent

attributes for the client and the server of the variable.

Define Variable Set

This service creates a variable set with the requested attributes.

Parameter Request

Argument

 var_set_name

 user_type

 access_type

 priority

 inhibit-time

Mandatory

 mandatory

 mandatory

 mandatory

 optional

 optional

• NOTE: The cooperating applications are responsible for using consistent

attributes for the client and the server of the variable set.

Update Variable

Through this service the server of var_name updates the value of var_name. Previously

updated values for var_name are lost. Var_name must be a basic variable with access_type

'Read_Only' and user_type 'Server' and value must match the data_type attribute of var_name.

Parameter Request

Argument

 var_name

 value

Mandatory

 mandatory

 mandatory

February 1996

CMS Service Specification

- DS202-1 p. 10 -

4.4 Remote Services

Write Variable

Through this service the client of var_name supplies a value to the server(s) of

var_name. Var_name must be a variable with access_type 'Write_Only' or 'Read_Write'. The

supplied value must match the data_type attribute of var_name.

Parameter Request / Indication Response / Confirm

Argument

 var_name

 value

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 mandatory

Mandatory

 selection

 selection

 optional

• Write_Only variables: The service is unconfirmed. The supplied value is

indicated to the server. There are no Response/Confirm primitives. There can be

at most one client. There must be at least one server.

• Read_Write variables: The service is confirmed. The supplied value is indicated

to the server. The Remote Result parameter will indicate the success or failure of

the request. In case of a failure, optionally a value of the error_type attribute of

var_name confirms the reason. There can be at most one client. There must be

exactly one server.

Read Variable

Through this service the client of var_name requests the server of var_name to supply

its value. Var_name must be a variable with access_type 'Read_Only' or 'Read_Write'. The

supplied value must match the data_type attribute of var_name.

• Read_Only basic variables: The service is confirmed. The Remote Result

parameter will confirm the requested value as set by the last Update Variable

service. There can be zero or more clients. There must be exactly one server.

February 1996

CMS Service Specification

- DS202-1 p. 11 -

Parameter Request / Indication Response / Confirm

Argument

 var_name

Remote Result

 value

Mandatory

 mandatory

Mandatory

 mandatory

• Read_Write variables, Read_Only multiplexed variables: The service is

confirmed. The Remote Result parameter will indicate the success or failure of

the request. In case of success, the requested value is confirmed. In case of a

failure, optionally a value of the error_type attribute of var_name confirms the

reason. There can be at most one client. There must be exactly one server.

Parameter Request / Indication Response / Confirm

Argument

 var_name

Remote Result

 success

 value

 failure

 reason

Mandatory

 mandatory

Mandatory

 selection

 mandatory

 selection

 optional

4.5 Used COB's

• Read_Only Basic Variable

Client

COB-Type

Server

COB-Type

COB-Class COB-Length

RTR-rx RTR-tx 7 *

February 1996

CMS Service Specification

- DS202-1 p. 12 -

• Read_Only Multiplexed Variable

Client

COB-Type

Server

COB-Type

COB-Class COB-Length

tx

rx

rx

tx

1

4

1

*

• Write_Only Variables

Client

COB-Type

Server

COB-Type

COB-Class COB-Length

tx rx 2 *

• Access_Type = Read_Write:

Client

COB-Type

Server

COB-Type

COB-Class COB-Length

tx

rx

rx

tx

1

4

*

*

February 1996

CMS Service Specification

- DS202-1 p. 13 -

5. DOMAINS

5.1 Attributes

- name: see /4/

- user_type: one of the values {Client, Server}

- class: one of the values {Basic, Multiplexed}

- priority: a value in the range [0, 7]

- inhibit-time: n*100 usec, n >> 0

For a domain there can be at most one client and there must be exactly one server. A

domain whose class is 'Basic' is called a basic domain. A domain whose class is 'Multiplexed' is

called a multiplexed domain. The following attribute is only defined for multiplexed domains:

- mux_data_type: see section 4.2

5.2 Usage

Basic domains can be used to transfer an arbitrary large block of data from a client to a

server and vv. The contents of a data block is application specific and does not fall within the

scope of the CiA Standard on the CAN Application Layer for Industrial Applications.

Multiplexed domains can be used to transfer multiple data sets (each containing an

arbitrary large block of data) from a client to a server and vv. The client can control via a

multiplexor which data set is to be transferred. This multiplexor is a value of a CMS Data

Type. The CMS Data Type of the multiplexor and the contents of the data sets are application

specific and do not fall within the scope of the CiA Standard on the CAN Application Layer

for Industrial Applications.

A domain is transferred as a sequence of segments. Prior to transferring the segments

there is an initialization phase where client and server can prepare themselves for transferring

the segments. For multiplexed domains, it is also possible to transfer a data set during the

initialization phase. This mechanism is called an expedited transfer.

It is always the client that takes the initiative for a transfer. Both the client and the

server can take the initiative to abort the transfer of a domain. By using the segmented

services, the application will be responsible for the segmentation of the domain. By using the

non-segmented services, CMS will be responsible for the segmentation.

February 1996

CMS Service Specification

- DS202-1 p. 14 -

5.3 Local Services

Define Domain

Parameter Request

Argument

 dom_name

 user_name

 priority

 inhibit-time

 class

 basic_dom

 mux_dom

 mux_data_type

Mandatory

 mandatory

 mandatory

 optional

 optional

 mandatory

 selection

 selection

 mandatory

This service creates a domain with the requested attributes.

• NOTE: The cooperating applications are responsible for using consistent

attributes for the client and the server of the domain.

5.4 Remote Services (non-segmented)

When using these services, CMS will be responsible for transferring the domain as a

sequence of segments.

Domain Download

Through this service the client of dom_name downloads data to the server of

dom_name. The data and optionally its size are indicated to the server. For multiplexed

domains the multiplexor of the data set that has been downloaded is indicated to the server.

The value of multiplexor must match the mux_data_type attribute of dom_name.

The service is confirmed. The Remote Result parameter will indicate the success or

failure of the request. In case of a failure, optionally the reason is confirmed.

February 1996

CMS Service Specification

- DS202-1 p. 15 -

Parameter Request / Indication Response / Confirm

Argument

 dom_name

 data

 size

 basic_dom

 mux_dom

 multiplexor

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 mandatory

 optional

 selection

 selection

 mandatory

Mandatory

 selection

 selection

 optional

Domain Upload

Through this service the client of dom_name uploads data from the server of

dom_name. For multiplexed domains the multiplexor of the data set that has to be uploaded is

indicated to the server. The value of multiplexor must match the mux_data_type attribute of

dom_name.

Parameter Request / Indication Response / Confirm

Argument

 dom_name

 basic_dom

 mux_dom

 multiplexor

Remote Result

 success

 data

 size

 failure

 reason

Mandatory

 mandatory

 selection

 selection

 mandatory

Mandatory

 selection

 mandatory

 optional

 selection

 optional

The service is confirmed. The Remote Result parameter will indicate the success or

failure of the request. In case of a failure, optionally the reason is confirmed. In case of

success, the data and optionally its size are confirmed.

February 1996

CMS Service Specification

- DS202-1 p. 16 -

5.5 Remote Services (segmented)

When using these services, the application will be responsible for transferring the

domain as a sequence of segments.

Initiate Domain Download

Through this service the client of dom_name requests the server of dom_name to

prepare for downloading data to the server. Optionally the size of the data to be downloaded is

indicated to the server.

For multiplexed domains the multiplexor of the data set whose download is initiated

and the transfer_type are indicated to the server. The value of multiplexor must match the

mux_data_type attribute of dom_name. In case of an expedited download, the data of the data

set identified by multiplexor is indicated to the server.

Parameter Request / Indication Response / Confirm

Argument

 dom_name

 size

 basic_dom

 mux_dom

 multiplexor

 transfer_type

 normal

 expedited

 data

Remote Result

 success

Mandatory

 mandatory

 optional

 selection

 selection

 mandatory

 mandatory

 selection

 selection

 mandatory

Mandatory

 mandatory

The service is confirmed. The Remote Result parameter will indicate the success of the

request. In case of a failure, an abort domain transfer request must be executed. In case of a

successful expedited download of a multiplexed domain, this service concludes the download

of the data set identified by multiplexor.

February 1996

CMS Service Specification

- DS202-1 p. 17 -

Download Domain Segment

Through this service the client of dom_name supplies the data of the next segment to

the server of dom_name. The segment data and optionally its size are indicated to the server.

The continue parameter indicates the server whether there are still more segements to be

downloaded or that this was the last segment to be downloaded.

Parameter Request / Indication Response / Confirm

Argument

 dom_name

 data

 size

 continue

 more

 last

Remote Result

 success

Mandatory

 mandatory

 mandatory

 optional

 mandatory

 selection

 selection

Mandatory

 mandatory

The service is confirmed. The Remote Result parameter will indicate the success of the

request. In case of a failure, an abort domain transfer request must be executed. In case of

success, the server has accepted the segment data and is ready to accept the next segment.

There can be atmost one Download Domain Segment service outstanding for a Domain.

For basic domains a successful 'Initiate Domain Download' service must have been

executed prior to this service. For multiplexed domains a successful 'Initiate Domain

Download' service with transfer_type 'normal' must have been executed prior to this service.

Initiate Domain Upload

Through this service the client of dom_name requests the server of dom_name to

prepare for uploading data to the client. For multiplexed domains the multiplexor of the data

set whose upload is initiated is indicated to the server. The value of multiplexor must match the

mux_data_type attribute of dom_name.

The service is confirmed. The Remote Result parameter will indicate the success of the

request. In case of a failure, an abort domain transfer request must be executed. In case of

success, optionally the size of the data to be uploaded is confirmed. In case of successful

expedited upload of a multiplexed domain, this service concludes the upload of the data set

identified by multiplexor and the corresponding data is confirmed.

February 1996

CMS Service Specification

- DS202-1 p. 18 -

Parameter Request / Indication Response / Confirm

Argument

 dom_name

 basic_dom

 mux_dom

 multiplexor

Remote Result

 success

 size

 basic_dom

 mux_dom

 multiplexor

 transfer_type

 normal

 expedited

 data

Mandatory

 mandatory

 selection

 selection

 mandatory

Mandatory

 mandatory

 optional

 selection

 selection

 mandatory

 mandatory

 selection

 selection

 mandatory

Upload Domain Segment

Parameter Request / Indication Response / Confirm

Argument

 dom_name

Remote Result

 success

 data

 size

 continue

 more

 last

Mandatory

 mandatory

Mandatory

 mandatory

 mandatory

 optional

 mandatory

 selection

 selection

February 1996

CMS Service Specification

- DS202-1 p. 19 -

Through this service the client of dom_name requests the server of dom_name to

supply the data of the next segment. The continue parameter indicates the client whether there

are still more segements to be uploaded or that this was the last segment to be uploaded. There

can be atmost one Upload Domain Segment service outstanding for a Domain.

The service is confirmed. The Remote Result parameter will indicate the success of the

request. In case of a failure, an abort domain transfer request must be executed. In case of

success, the segment data and optionally its size are confirmed.

For basic domains a successful 'Initiate Domain Upload' service must have been

executed prior to this service. For multiplexed domains a successful 'Initiate Domain Upload'

service with transfer_type 'normal' must have been executed prior to this service.

Abort Domain Transfer

Parameter Request / Indication

Argument

 dom_name

 reason

Mandatory

 mandatory

 optional

This service aborts the up- or download of dom_name. Optionally the reason is

indicated. The service is unconfirmed. The service may be executed at any time by both the

client and the server of dom_name. If the client of dom_name has a confirmed service

outstanding, the Abort Indication is taken to be the Confirm of that service.

5.6 Used COB's

Client

COB-Type

Server

COB-Type

COB-Class COB-Length

tx

rx

rx

tx

1

4

8

8

February 1996

CMS Service Specification

- DS202-1 p. 20 -

6. EVENTS

6.1 Attributes

- name: see /4/

- user_type: one of the values {Client, Server}

- class: one of the values {Controlled, Uncontrolled, Stored}

- data_type: see /3/

- priority: a value in the range [0, 7]

- inhibit-time: n*100 usec, n >> 0

An event whose class is 'Controlled' is called a controlled event. An event whose class

is 'Uncontrolled' is called an uncontrolled event. An event whose class is 'Stored' is called a

stored event. The following attributes are only defined for controlled events:

- error_type: see /3/

- control_state: one of the values {Enabled, Disabled}

6.2 Usage

An event can be used to model asynchronous behaviour such as a temperature

exceeding a certain limit. The occurrence of an event is detected by the server and can be

notified to the client(s). An event has a data_type attribute to supply additional information

about what caused the event to occur such as the actual temperature that exceeded the limit.

Uncontrolled events can be used to implement events that are notified to any client that

is "interested". Uncontrolled events are always notified when they occur.

Controlled events can be used to implement an event that can be notified to at most one

client. The client can control whether the server notifies the event when it occurs.

Stored events can be used by a server to store locally a value of the data_type attribute

of an event and optionally notify the client(s). A client, on his own initiative, can read the last

value of an event that was stored by the server. Previously stored values are lost.

February 1996

CMS Service Specification

- DS202-1 p. 21 -

6.3 Local Services

Define Event

Parameter Request

Argument

 event_name

 data_type

 class

 controlled

 error_type

 uncontrolled

 stored

 user_type

 proiority

 inhibit-time

Mandatory

 mandatory

 mandatory

 mandatory

 selection

 optional

 selection

 selection

 mandatory

 optional

 optional

This service creates an event with the requested attributes. The control state of a

controlled event will be 'Disabled'. The attributes must not cause the data length of the used

COB's to overflow the maximum.

• NOTE: The cooperating applications are responsible for using consistent

attributes for the client and server of the event.

6.4 Remote Services

• Event Class = Controlled: There can be at most one client. There must be

exactly one server.

• Event Class = Uncontrolled: There can be zero or more clients. There can be at

most one server.

• Event Class = Stored: There can be zero or more clients. There must be exactly

one server.

Notify Event

Through this service the server of event_name notifies the client(s) of event_name that

the event has occurred and supplies its value. Event_name must be an uncontrolled event or a

controlled event with control_state 'Enabled'. Value must match the data_type attribute of

event_name. The service is unconfirmed.

February 1996

CMS Service Specification

- DS202-1 p. 22 -

Parameter Request / Indication

Argument

 event_name

 value

Mandatory

 mandatory

 mandatory

Store Event

Through this service the server of event_name stores the value of event_name.

Previously stored values for event_name are lost. Optionally the server immediately notifies

this value to the client(s) of event_name.

Parameter Request / Indication

Argument

 event_name

 value

 immediate_notify

Mandatory

 mandatory

 mandatory

 optional

Event_name must be a stored event. Value must match the data_type attribute of

event_name. The service is local unless immediate notification is requested. In that case the

service is unconfirmed.

Read Event

Through this service the client of event_name requests the server of event_name to

supply the value as stored by the last Store Event service. The service is confirmed. The

Remote Result parameter will confirm the value.

Parameter Request / Indication Response / Confirm

Argument

 event_name

Remote Result

 value

Mandatory

 mandatory

Mandatory

 mandatory

Event_name must be a stored event. Value must match the data_type attribute of

event_name.

February 1996

CMS Service Specification

- DS202-1 p. 23 -

Set Event Control State

Through this service the client of event_name requests the server of event_name to set

its control_state to the selected value. Event_name must be a controlled event. The service is

confirmed. The Remote Result parameter will indicate the success or failure of the request. In

case of a failure, optionally a value of the error_type attribute of event_name confirms the

reason.

Parameter Request / Indication Response / Confirm

Argument

 event_name

 control_state

 enabled

 disabled

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 mandatory

 selection

 selection

Mandatory

 selection

 selection

 optional

6.5 Used COB's

• Uncontrolled Events:

Client

COB-Type

Server

COB-Type

COB-Class COB-Length

rx tx 3 *

• Controlled Events:

Client

COB-Type

Server

COB-Type

COB-Class COB-Length

tx

rx

rx

tx

1

3

1

*

February 1996

CMS Service Specification

- DS202-1 p. 24 -

• Stored Events:

Client

COB-Type

Server

COB-Type

COB-Class COB-Length

RTR-rx RTR-tx 7 *

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS202-2

February 1996

CMS Protocol Specification

February 1996

CMS Protocol Specification

- DS202-2 p. 2 -

1. SCOPE

This document contains the protocol specification of the CAN-based Message

Specification (CMS). CMS is part of the CAN Application Layer. This document is part of a

set of documents that standardize the CAN Application Layer for Industrial Applications.

2. REFERENCES

/1/: CiA/DS201, CAN Reference Model

/2/: CiA/DS202-1, CMS Service Specification

/3/: CiA/DS202-3, CMS Encoding Rules and Data Types

3. GENERAL DESCRIPTION

3.1 CMS Protocol Perspective

CMS defines a number of objects and remote services on these objects. In order to

implement the remote services two (or more) CMS entities have to exchange information using

a protocol.

3.2 CMS Protocol Descriptions

A protocol description describes the sequence of COB's and their format that are

exchanged between the CMS Client(s) and Server(s) for a particular service on a CMS object,

see /2/. All other COB attributes are described in /2/.

All CMS objects except a Multiplexed Variable use different COB's to implement the

protocols for the services that are defined for that CMS object. Multiplexed Variables use the

COB's of the Variable Set onto which they are multiplexed. There are two CMS service types,

see /1/. Confirmed services use two COB's or one remote COB, whereas for unconfirmed

services one COB will be sufficient.

The data length of the used COB's (indicated by the letter 'L' in the protocol

descriptions) depends on the format of the application data (if any) that has to be transported

in them. This format is specified by the data type or error type attribute of the corresponding

CMS object (see /2/) and the CMS Encoding Rules (see /3/). These rules determine the number

of bytes that are required to hold the application data.

February 1996

CMS Protocol Specification

- DS202-2 p. 3 -

The data length of the used COB's is the maximum as required by the format of the

data type and error type attribute of the corresponding CMS object. For a Variable Set, the

length of the used COB's is the maximum of the lengths required by each of the Multiplexed

Variables that are multiplexed onto it. The length of the COB's for Domains (basic and

multiplexed) is always 8.

In the description of the COB data format, bytes are numbered from 0 to and including

7. Bits within a byte are numbered from 0 to and including 7. Byte 0 is transmitted first, byte 7

is transmitted last. Within a byte, bit 0 is the least significant bit, bit 7 is the most significant bit.

In the protocol descriptions, [a, b] denotes the range of integers from a to b with a and b

included. If a > b, the range is empty.

The terms 'lsb' and 'msb' stand for 'least significant byte' and 'most significant byte'

respectively and are used to define how an integer number is stored in more than one byte. The

order of significance is from lsb to msb.

February 1996

CMS Protocol Specification

- DS202-2 p. 4 -

4. CMS VARIABLE PROTOCOLS

4.1 Read-Only Access, Basic Variables

One confirmed service (Read Variable) is defined.

Read Variable Protocol

• appl-data: up to L bytes of application data representing a value of the data type

attribute of the basic variable

4.2 Read-Only Access, Multiplexed Variables

One confirmed service (Read Variable) is defined.

Read Variable Protocol

February 1996

CMS Protocol Specification

- DS202-2 p. 5 -

• mux: multiplexor, a value between 0 and 127 (inclusive)

• X: not used, always 0

• r: result

0: Success

1: Failure

• appl-data: up to L-1 bytes of application data. In case r = 0, it represents a value

of the data type attribute of the multiplexed variable identified by mux. In case r =

1, it represents a value of the error type attribute of the multiplexed variable

identified by mux.

4.3 Write-Only Access, Basic Variables

One unconfirmed service (Write Variable) is defined.

Write Variable Protocol

• appl-data: up to L bytes of application data representing a value of the data type

attribute of the basic variable.

4.4 Write-Only Acces, Multiplexed Variables

One unconfirmed service (Write Variable) is defined.

Write Variable Protocol

• mux: multiplexor, a value between 0 and 127 (inclusive)

February 1996

CMS Protocol Specification

- DS202-2 p. 6 -

• X: not used, always 0

• appl-data: up to L-1 bytes of application data representing a value of the data

type attribute of the multiplexed variable identified by mux.

4.5 Read/Write Access, Basic and Multiplexed Variables

Two confirmed services (Read Variable and Write Variable) are defined.

Read/Write Variable Protocol

• mux: multiplexor, only valid for multiplexed variables. If valid, a value between 0

and 127 (inclusive), otherwise 0

• c: command specifier

0: write

1: read

February 1996

CMS Protocol Specification

- DS202-2 p. 7 -

• req-appl-data: only valid when c = 0, otherwise reserved for further use by CiA.

If valid it contains up to L-1 bytes of application data representing a value of the

data type attribute of the basic variable, respectively the multiplexed variable

identified by mux.

• r: result

0: Success

1: Failure

• resp-appl-data: up to L-1 bytes of application data. In case of a write response

and r = 0, it represents the same value as passed with the write request. In case of

a read response and r = 0, it represents a value of the data type attribute of the

variable respectively the multiplexed variable identified by mux. In case r = 1, it

represents a value of the error type attribute of the basic variable respectively the

multiplexed variable identified by mux.

February 1996

CMS Protocol Specification

- DS202-2 p. 8 -

5. CMS BASIC DOMAIN PROTOCOLS

Six confirmed services (Domain Download, Domain Upload, Initiate Domain Upload,

Initiate Domain Download, Download Segment, and Upload Segment) and one unconfirmed

service (Abort Domain Transfer) are defined for basic domains.

5.1 Download Domain Protocol

This protocol is used to implement the 'Domain Download' service for basic domains,

see /2/. Basic domains are downloaded as a sequence of 'Download Domain Segment' services

preceded by an 'Initiate Domain Download' service. The sequence is terminated by:

• a 'Download Domain Segment' response/confirm with the c-bit set to 1, indicating

the succesful completion of the download sequence.

• an 'Abort Domain Transfer' request/indication, indicating the unsuccessful

completion of the download sequence.

• a new 'Initiate Domain Download' request/indication, indicating the unsuccessful

completion of the download sequence and the start of a new download sequence.

If in the download of two consecutive segments the toggle bit does not alter, this must

be treated as if an invalid COB was received (see Annex I). If such an error is reported to the

application, the application may decide to abort the download.

February 1996

CMS Protocol Specification

- DS202-2 p. 9 -

Initiate Domain Download Protocol

This protocol is used to implement the 'Initiate Domain Download' service for basic

domains, see /2/.

• ccs: client command specifier

1: initiate download request

• scs: server command specifier

3: initiate download response

• s: size indicator

0: data size is not indicated

1: data size is indicated

• n: Only valid if s = 1, otherwise reserved for further use by CiA. If valid it

contains the number of bytes to be downloaded

• X: not used, always 0

• reserved: reserved for further use by CiA

Download Domain Segment Protocol

February 1996

CMS Protocol Specification

- DS202-2 p. 10 -

This protocol is used to implement the 'Download Domain Segment' service for basic

domains, see /2/.

• ccs: client command specifier

0: download segment request

• scs: server command specifier

1: download segment response

• seg-data: at most seven bytes of segment data to be downloaded. Their meaning

has to be specified by the application.

• n: indicates the number of bytes in seg-data that do not contain segment data.

Bytes [8-n, 7] do not contain segment data. n = 0 if no segment size is indicated.

• c: indicates whether there are still more segments to be downloaded.

0 more segments to be downloaded

1: no more segments to be downloaded

• t: toggle bit. This bit must alternate for each subsequent segment that is

downloaded. The first segment will have the toggle-bit set to 0. The toggle bit

will be equal for the request and the response message.

• X: not used, always 0

• reserved: reserved for further use by CiA

5.2 Upload Domain Protocol

February 1996

CMS Protocol Specification

- DS202-2 p. 11 -

This protocol is used to implement the 'Domain Upload' service for basic domains, see

/2/. Basic domains are uploaded as a sequence of 'Upload Domain Segment' services preceded

by an 'Initiate Domain Upload' service. The sequence is terminated by:

• an 'Upload Domain Segment' response/confirm with the c-bit set to 1, indicating

the succesful completion of the upload sequence.

• an 'Abort Domain Transfer' request/indication, indicating the unsuccessful

completion of the upload sequence.

• a new 'Initiate Domain Upload' request/indication, indicating the unsuccessful

completion of the upload sequence and the start of a new sequence.

If in the upload of two consecutive segments a toggle bit error occurs, this must be

treated as if an invalid COB was received (see Annex I). If such an error is reported to the

application, the application may decide to abort the upload.

Initiate Domain Upload Protocol

This protocol is used to implement the 'Initiate Domain Upload' service for basic

domains, see /2/.

• ccs: client command specifier

2: initiate upload request

• scs: server command specifier

2: initiate upload response

• s: size indicator

0: data size is not indicated

1: data size is indicated

February 1996

CMS Protocol Specification

- DS202-2 p. 12 -

• n: Only valid if s = 1, otherwise reserved for further use by CiA. If valid it

contains the number of bytes to be uploaded.

• X: not used, always 0

• reserved: reserved for further use by CiA

Upload Domain Segment Protocol

This protocol is used to implement the 'Upload Domain Segment' service for basic

domains, see /2/.

• ccs: client command specifier

3: upload segment request

• scs: server command specifier

0: upload segment response

• t: toggle bit. This bit must alternate for each subsequent segment that is

uploaded. The first segment will have the toggle-bit set to 0. The toggle bit will

be equal for the request and the response message.

• c: indicates whether there are still more segments to be uploaded.

0: more segments to be uploaded

1: no more segments to be uploaded

• seg-data: at most seven bytes of segment data to be uploaded. Their meaning has

to be specified by the application.

• n: indicates the number of bytes in seg-data that do not contain segment data.

Bytes [8-n, 7] do not contain segment data. n = 0 if no segment size is indicated.

February 1996

CMS Protocol Specification

- DS202-2 p. 13 -

• X: not used, always 0

• reserved: reserved for further use by CiA

5.3 Abort Domain Transfer

Abort Domain Transfer Protocol

This protocol is used to implement the 'Abort Domain Transfer' Service for basic

domains, see /2/.

• cs: command specifier

4: abort domain transfer

• f: indicates the reason for the failure.

0: unspecified error

1: application request

2: no resources

3..127: reserved for further use by CiA

128..255: implementation specific error codes

• X: not used, always 0

• d: only valid if f = 1 or f > 128, otherwise reserved for further use by CiA. If

valid it contains application specific information about the reason for the abort.

February 1996

CMS Protocol Specification

- DS202-2 p. 14 -

6. CMS MULTIPLEXED DOMAIN PROTOCOLS

Six confirmed services (Domain Download, Domain Upload, Initiate Domain Upload,

Initiate Domain Download, Download Segment, and Upload Segment) and one unconfirmed

service (Abort Domain Transfer) are defined for multiplexed domains.

The format of the multiplexor field in the COB's of Multiplexed Domains is determined

by the multiplexor data type attribute of the corresponding Multiplexed Domain (see /2/) and

the CMS Encoding Rules (see /3/). The multiplexor field has a fixed length of 3 bytes. If the

encoded value of the multiplexor uses n bytes (0 < n < 3), it is located in bytes [1, n]. Bytes

[1+n, 3] are not to be interpreted.

6.1 Download Domain Protocol

This protocol is used to implement the 'Domain Download' service for multiplexed

domains, see /2/. Multiplexed domains are downloaded as a sequence of zero or more

'Download Domain Segment' services preceded by an 'Initiate Domain Download' service. The

sequence is terminated by:

• an 'Initiate Domain Download' request/indication with the e-bit set to 1 followed

by an 'Initiate Domain Download' response/confirm, indicating the successful

completion of an expedited download sequence.

• a 'Download Domain Segment' response/confirm with the c-bit set to 1, indicating

the succesful completion of a normal download sequence.

• an 'Abort Domain Transfer' request/indication, indicating the unsuccessful

completion of the download sequence.

February 1996

CMS Protocol Specification

- DS202-2 p. 15 -

• a new 'Initiate Domain Download' request/indication, indicating the unsuccessful

completion of the download sequence and the start of a new download sequence.

If in the download of two consecutive segments the toggle bit does not alter, this must

be treated as if an invalid COB was received (see Annex I). If such an error is reported to the

application, the application may decide to abort the download.

Initiate Domain Download Protocol

This protocol is used to implement the 'Initiate Domain Download' service for

multiplexed domains, see /2/.

• ccs: client command specifier

1: initiate download request

• scs: server command specifier

3: initiate download response

• n: Only valid if e = 1 and s = 1, otherwise 0. If valid it indicates the number of

bytes in d that do not contain data. Bytes [8-n, 7] do not contain data.

• e: transfer type

0: normal transfer

1: expedited transfer

• s: size indicator

0: data set size is not indicated

1: data set size is indicated

February 1996

CMS Protocol Specification

- DS202-2 p. 16 -

• m: multiplexor. It represents a value of the multiplexor data type attribute of the

multiplexed domain.

• d: data

e = 0, s = 0: d is reserved for further use by CiA.

e = 0, s = 1: d contains the number of bytes to be downloaded.

Byte 4 contains the lsb and byte 7 contains the msb.

e = 1: d contains the data to be downloaded

• X: not used, always 0

• reserved: reserved for further use by CiA

Download Domain Segment Protocol

This protocol is used to implement the 'Download Domain Segment' service for

multiplexed domains, see /2/.

• ccs: client command specifier

0: download segment request

• scs: server command specifier

1: download segment response

• seg-data: at most seven bytes of segment data to be downloaded. Their meaning

has to be specified by the application.

• n: indicates the number of bytes in seg-data that do not contain segment data.

Bytes [8-n, 7] do not contain segment data. n = 0 if no segment size is indicated.

• c: indicates whether there are still more segments to be downloaded.

0 more segments to be downloaded

1: no more segments to be downloaded

February 1996

CMS Protocol Specification

- DS202-2 p. 17 -

• t: toggle bit. This bit must alternate for each subsequent segment that is

downloaded. The first segment will have the toggle-bit set to 0. The toggle bit

will be equal for the request and the response message.

• X: not used, always 0

• reserved: reserved for further use by CiA

6.2 Upload Domain Protocol

This protocol is used to implement the 'Domain Upload' service for multiplexed

domains, see /2/. Multiplexed domains are uploaded as a sequence of zero or more 'Upload

Domain Segment' services preceded by an 'Initiate Domain Upload' service. The sequence is

terminated by:

• an 'Initiate Domain Upload' response/confirm with the e-bit set to 1, indicating

the successful completion of an expedited upload sequence.

• an 'Upload Domain Segment' response/confirm with the c-bit set to 1, indicating

the succesful completion of a normal upload sequence.

• an 'Abort Domain Transfer' request/indication, indicating the unsuccessful

completion of the upload sequence.

• a new 'Initiate Domain Upload' request/indication, indicating the unsuccessful

completion of the upload sequence and the start of a new sequence.

February 1996

CMS Protocol Specification

- DS202-2 p. 18 -

If in the upload of two consecutive segments the toggle bit does not alter, this must be

treated as if an invalid COB was received (see Annex I). If such an error is reported to the

application, the application may decide to abort the upload.

Initiate Domain Upload Protocol

This protocol is used to implement the 'Initiate Domain Upload' service for multiplexed

domains, see /2/.

• ccs: client command specifier

2: initiate upload request

• scs: server command specifier

2: initiate upload response

• n: Only valid if e = 1 and s = 1, otherwise 0. If valid it indicates the number of

bytes in d that do not contain data. Bytes [8-n, 7] do not contain segment data.

• e: transfer type

0: normal transfer

1: expedited transfer

• s: size indicator

0: data set size is not indicated

1: data set size is indicated

• m: multiplexor. It represents a value of the multiplexor data type attribute of the

multiplexed domain.

February 1996

CMS Protocol Specification

- DS202-2 p. 19 -

• d: data

e = 0, s = 0: d is reserved for further use by CiA.

e = 0, s = 1: d contains the number of bytes to be uploaded.

Byte 4 contains the lsb and byte 7 contains the msb.

e = 1: d contains the data to be uploaded

• X: not used, always 0

• reserved: reserved for further use by CiA

Upload Domain Segment Protocol

This protocol is used to implement the 'Upload Domain Segment' service for

multiplexed domains, see /2/.

• ccs: client command specifier

3: upload segment request

• scs: server command specifier

0: upload segment response

• t: toggle bit. This bit must alternate for each subsequent segment that is

uploaded. The first segment will have the toggle-bit set to 0. The toggle bit will

be equal for the request and the response message.

• c: indicates whether there are still more segments to be uploaded.

0: more segments to be uploaded

1: no more segments to be uploaded

February 1996

CMS Protocol Specification

- DS202-2 p. 20 -

• seg-data: at most seven bytes of segment data to be uploaded. Their meaning has

to be specified by the application.

• n: indicates the number of bytes in seg-data that do not contain segment data.

Bytes [8-n, 7] do not contain segment data. n = 0 if no segment size is indicated.

• X: not used, always 0

• reserved: reserved for further use by CiA

6.3 Abort Domain Transfer

Abort Domain Transfer Protocol

This protocol is used to implement the 'Abort Domain Transfer' Service for multiplexed

domains, see /2/.

• cs: command specifier

4: abort domain transfer

• X: not used, always 0

• m: multiplexor. It represents a value of the multiplexor data type attribute of the

multiplexed domain.

• d: contains application specific data about the reason for the abort.

February 1996

CMS Protocol Specification

- DS202-2 p. 21 -

7. CMS EVENT PROTOCOLS

7.1 Uncontrolled Event

One unconfirmed service (Notify Event) is defined.

Notify Event Protocol

• appl-data: up to L bytes of application data representing a value of the data type

attribute of the event.

7.2 Controlled Event

One confirmed (Set Event Control State) and one unconfirmed service (Notify Event)

is defined.

Set Event Control State Protocol

February 1996

CMS Protocol Specification

- DS202-2 p. 22 -

• ccs: client command specifier

1: Set_event_control_state

• scs: server command specifier

1: Set_event_control_state

• rs: requested control status, only valid if ccs = 1, otherwise 0

0: Disabled

1: Enabled

• X: not used, always 0

• as: actual control status, only valid if scs = 1 and r = 0, otherwise 0

0: Disabled

1: Enabled

• r: result, only valid if scs = 1, otherwise 0

0: Success

1: Failure

• appl-data: only valid if r = 1. If valid it contains up to L-1 bytes of application

data representing a value of the error type attribute of the event.

• X: not used, always 0

Notify Event Protocol

• scs: server command specifier

0: Notify-Event

• appl-data: up to L-1 bytes of application data representing a value of the data

type attribute of the event.

• X: not used, always 0

February 1996

CMS Protocol Specification

- DS202-2 p. 23 -

7.3 Stored Events

One unconfirmed service (Store and Immediate Notify) and one confirmed service

(Read Event) is defined.

Store and Immediate Notify Protocol

• appl-data: up to L bytes of application data representing a value of the data type

attribute of the stored event

Read Event Protocol

• appl-data: up to L bytes of application data representing a value of the data type

attribute of the stored event

February 1996

CMS Protocol Specification

- DS202-2 p. 24 -

ANNEX I

IMPLEMENTATION RULES

When implementing the CMS protocols, the following rules have to be obeyed to

guarantee interoperability. These rules deal with the following implementation aspects:

Invalid COB's

A COB is invalid if it has a COB-ID that is used by the CMS Protocol, but it contains

invalid parameter values according to the CMS Protocol. This can only be caused by errors in

the lower layers (see /1/) or implementation errors. Invalid COB's must be handled locally in

an implementation specific way that does not fall within the scope of the CiA Standard on the

CAN Application Layer for Industrial Applications. As far as the CMS Protocol is concerned,

an invalid COB must be ignored.

Time-out's

Since COB's may be ignored, the response of a confirmed CMS service may never

arrive. To resolve this situation, an implementation may, after a certain amount of time,

indicate this to the service user (time-out). A time-out is not a confirm of that CMS service.

A time-out indicates that the service has not completed yet. The application must deal with this

situation. Time-out values are considered to be implementation specific and do not fall within

the scope of the CiA Standard on the CAN Application Layer for Industrial Applications.

However, it is recommended that an implementation provides facilities to adjust these time-out

values to the requirements of the application.

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS202-3

February 1996

CMS Data Types and Encoding Rules

February 1996

CMS Data Types and Encoding Rules

- DS202-3 p. 2 -

1. Scope

This document contains the encoding rules that are used to transfer CMS data values

across the CAN Network and definitions application specifc extended data types. This

document is part of a set of documents that standardize the CAN Application Layer for

Industrial Applications.

2. References

/1/CiA/DS202-1, CMS Service Specification

/2/CiA/DS207, Application Layer Naming Conventions

/3/ANSI/IEEE Standard 754-1985 for Binary Floating-PointArithmetic.

Reprinted in: ACM SIGPLAN Notices 22(2), 9-25 (1987).

3. General Description

To be able to exchange meaningful data across the CAN network, the format of this

data and its meaning have to be known by the sender and receiver(s). CMS models this by the

concept of data types.

The CMS encoding rules define the representation of values of data types and the CAN

network transfer syntax for the repesentations. Values are represented as bit sequences. Bit

sequences are transferred in sequences of octetts (bytes). For numerical data types the CMS

encoding is little endian style.

Applications require data types beyond the basic data types. Using the compound data

type mechanism the list of available data types can be extended. Some general extended data

types are defined.

February 1996

CMS Data Types and Encoding Rules

- DS202-3 p. 3 -

4. Data Type Definitions

A data type determines a relation between values and encodings for data of that type.

Data types are assigned names in their type definitions. The syntax of data and data type

definitions is as follows.

<data definition> ::=<type name> <data name>

<type definition> ::=<constructor> <type name>

<constructor> ::=<compound constructor> |

<basic constructor>

<compound constructor> ::=<array constructor>|

<structure contructor>

<array constructor> ::=ARRAY [<array length>] OF <type name>

<structure constructor> ::=STRUCT OF <component list>

<component list> ::=<component> |

<component>, <component list>

<component> ::=<type name> <component name>

<basic constructor> ::=BOOLEAN |

VOID<bit size> |

INTEGER<bit size> |

UNSIGNED<bit size> |

REAL32 |

NIL

<array length> ::=positive integer

<bit size> ::=1|2|...|64

<type name> ::=symbolic name (see /2/)

<component name> ::=symbolic name (see /2/)

<data name> ::=symbolic name (see /2/)

Recursive definitions are not allowed.

The data type defined by <type definition> is called basic (resp.~compound) when the

constructor is <basic constructor>(resp. <compound constructor>).

February 1996

CMS Data Types and Encoding Rules

- DS202-3 p. 4 -

5. Bit Sequences

5.1 Definitions

A bit can take the values 0 or 1. Let b0,..., bn-1 be bits, n a non-negative integer. Then

b = b0 b1 ... bn-1

is called a bit sequence of length |b| = n. The empty bit sequence of length 0 is denoted !.

Examples: 10110100, 1, 101, etc. are bit sequences.

The inversion operator (¬) on bit sequences assigns to a bit sequence

b = b0 b1 ... bn-1

the bit sequence

¬b = ¬b0 ¬b1... ¬bn-1

Here ¬0 =1 and ¬1 = 0 on bits.

The basic operation on bit sequences is concatenation.

Let a = a0...am-1 and b = b0 ... bn-1 be bit sequences. Then the concatenation of a and b,

denoted ab, is

ab = a0 ... am-1 b0 ... bn-1

Example: (10)(111) = 10111 is the concatenation of 10 and 111.

The following holds for arbitrary bit sequences a and b:

|ab| = |a| + |b|

and

!a = a! = a

5.2 Transfer Syntax

For transmission across a CAN network a bit sequence is reordered into a sequence of

octetts. Here and in the following hexadecimal notation is used for octetts. Let b=b0...bn-1 be

a bit sequence with n<64. Denote l a non-negative integer such that 8(l-1)<n<8l. Then b is

transferred in l octetts assembled as shown in Figure 1. The bits bi, i >n of the highest

numbered octett are don't care bits.

Octett 1 is transmitted first and octett l is transmitted last. Hence the bit sequence is transferred

as follows across the CAN network:

b7, b6,...,b0,b15,...,b8,...

February 1996

CMS Data Types and Encoding Rules

- DS202-3 p. 5 -

7 6 ... 0

 1

 2

 l

b7 b6 ... b0
b15 b14 ... b8

b8l-1 b8l-2 ... b8l-8

Figure 1: Transfer Syntax for Bit Sequences

Example: The bit sequence 0011 1000 01 is transferred in two octetts:

First 1ch and then 02h.

February 1996

CMS Data Types and Encoding Rules

- DS202-3 p. 6 -

6. Basic Data Types

For basic data types <type name> equals the literal string of the associated constructor,

e.g.,

BOOLEAN BOOLEAN

is the type definition for the Boolean data type.

6.1 NIL

Data of basic data type NIL is represented by !.

6.2 Boolean

Data of basic data type BOOLEAN attains the values TRUE or FALSE. The values are

represented as bit sequences of length 1. The value TRUE (resp. FALSE) is represented by the

bit sequence 1 (resp.0).

6.3 Void

Data of basic data type VOIDn is represented as bit sequences of length n. The value of

data of type VOIDn is undefined. The bits in the a sequence of data of type VOIDn must either

be specified explicitly or else marked "don't care".

Data of type VOIDn is useful for reserved fields and for aligning components of

compound values on octett boundaries.

6.4 Unsigned Integer

Data of basic data type UNSIGNEDn has values in the non-negative integers. The

value range is 0, ..., 2n-1. The data is represented as bit sequences of length n. The bit

sequence

b = b0 ...bn-1

is assigned the value

UNSIGNEDn(b) = bn-1(2n-1)+ ...+ b1 21 + b0 20

Note that the bit sequence starts on the left with the least significant bit.

Example: The value 266 with data type UNSIGNED16 is transferred in two octetts

across the bus, first 0a h and then 01h.

February 1996

CMS Data Types and Encoding Rules

- DS202-3 p. 7 -

6.5 Signed Integer

Data of basic data type INTEGERn has values in the integers. The value range is

-2n-1, ..., 2n-1-1. The data is represented as bit sequences of length n. The bit sequence

b = b0 .. bn-1 is assigned the value

INTEGERn(b) = bn-2 2n-2 + ...+ b1 21 + b0 20 if bn-1 = 0

and, performing two's complement arithmetic,

INTEGERn(b) = INTEGERn(^b) - 1 if bn-1 = 1

Note that the bit sequence starts on the left with the least significant bit.

Example: The value -266 with data type INTEGER16 is transferred in two octetts

across the bus, first f6h and then feh.

6.6 Floating Point Number

Data of basic data type REAL32 has values in the real numbers.

The data is represented as bit sequences of length 32. The encoding of values follows the IEEE

754-1985 Standard for floating point numbers, see the reprint /3/.

A bit sequence of length 32 either has a value (finite non-zero real number, +0, + _) or

is NaN (not-a-number). The bit sequence b = b0 … b31 is assigned the value (finite non-zero

number)

REAL32(b) = (-1)S 2E - 127 (1 + F)

Here S=b31 is the sign. E = b30 27 + …+ b23 20, 0 < E < 255, is the un-biased exponent.

F = 2-23 (b22 222 + …+ b1 21 + b0 20) is the fractional part of the number. E =0 is used to

represent + 0. E =255 is used to represent infinities and NaN's. Note that the bit sequence

starts on the left with the least significant bit.

Example: 6.25 = 2E -127 (1 + F) with E =129 =27 +20 and F = 2-1 +2-4 =

2 -23(222+219). Hence the number is represented as:

6.25: 0000 0000 0000 0000 0001 0011 0000 0010

Figure 2 shows example encodings for REAL32 as sequences of four octetts for

transfer across the CAN network.

February 1996

CMS Data Types and Encoding Rules

- DS202-3 p. 8 -

7. Compound Data Types

Type definitions of compound data types expand to a unique list of type definitions

involving only basic data types. Correspondingly, data of compound type t́ype_name´ are

ordered lists of component data named component_i of basic type b́asic_type_i´.

Compound data types constructors are ARRAY and STRUCT OF.

STRUCT OF

<basic_type_1> <component_1>,

<basic_type_2> <component_2>,

… …

<basic_type_N> <component_N>

<type_name>

ARRAY [<length>] OF <basic_type> <type_name>

The bit sequence representing data of compound type is obtained by concatenating the

bit sequences representing the component data. Assume that the components ćomponent_i´

are represented by bit sequences bi, for i =1,…,N Then the compound data is represented by

the concatenated sequence b1 … bN.

Example: Consider the data type

STRUCT OF

INTEGER10 i,

UNSIGNED5 u

NewData

Assume i = - 423 and u =30. Let b(i) and b(u) denote the bit sequences representing

the values of i and u , respectively. Then:

b(i) = 1001101001

b(u) = 01111

b(iu) = b(i) b(u) = 1001101001 01111

The value of the structure is transferred with two octetts, first 59h and then 79h.

February 1996

CMS Data Types and Encoding Rules

- DS202-3 p. 9 -

8. Extended Data Types

The extended data types consist of the basic data types and the compound data types

defined in the following subsections.

8.1 Octett String

The data type OctettString<length> is defined below. length is the length of the octett string.

ARRAY [<length>] OF UNSIGNED8 OctettString<length>

8.2 Visible String

The data type VisibleString<length> is defined below. The admissable values of data

of type VisibleChar are 0h and the range from 20h to 7Eh. The data are interpreted as ASCII

characters. length is the length of the visible string.

UNSIGNED8 VisibleChar

ARRAY[<length>] OF VisibleChar VisibleString<length>

8.3 Date

The data type Date is defined below. It follows from the definition and the encoding rules that

data of type Date is represented as bit sequences of length 56.

STRUCT OF

UNSIGNED16 ms,

UNSIGNED6 min,

VOID2 reserved_1,

UNSIGNED5 hour,

VOID2 reserved_2,

BOOLEAN su,

UNSIGNED5 day_of_month,

UNSIGNED3 day_of_week,

UNSIGNED6 month,

VOID2 reserved_3,

UNSIGNED7 year,

VOID1 reserved_4

Date

February 1996

CMS Data Types and Encoding Rules

- DS202-3 p. 10 -

Figure 1 contains descriptions and value ranges for the components of data of type

Date. The components reserved_i, i =1,...,4, are reserved with all bits equal 0.

Component Description Value Range

ms milliseconds 0,...,59999

min minutes 0,...,59

hour hour 0,...,23

su standard or summer time 0 = standard, 1 = summer

day_of_month day of month 1,...,31

day_of_week day of week 1 = monday, 7 = sunday

month month 1,...,12

year year modulo centuries 0,...,99

Figure 1:Descriptions for Date

8.4 Time of Day

The data type TimeOfDay represents absolute time. It follows from the definition and

the encoding rules that TimeOfDay is represented as bit sequences of length 48.

Component ms is the time in milliseconds after midnight. Component days is the

number of days since January 1, 1984.

STRUCT OF

UNSIGNED28 ms,

VOID4 reserved_1,

UNSIGNED16 days

TimeOfDay

8.5 Time Difference

The data type TimeDifference represents a time difference. It follows from the

definition and the encoding rules that TimeDifference is represented as bit sequences of length

48.

Time differences are sums of numbers of days and milliseconds. Component ms is the

number milliseconds. Component days is the number of days.

STRUCT OF

UNSIGNED28 ms,

VOID4 reserved_1,

UNSIGNED16 days

TimeDifference

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS203-1

February 1996

NMT Service Specification

February 1996

NMT Service Specification

- DS203-1 p. 2 -

1. SCOPE

This document contains the Network Management Service Specification. This

document is part of a set of documents that standardize the CAN Application Layer for

Industrial Applications.

2. REFERENCES

/1/: CiA/DS201, CAN Reference Model

/2/: CiA/DS203-2, NMT Protocol Specification

/3/: CiA/DS207, Application Layer Naming Conventions

3. GENERAL DESCRIPTION

3.1 NMT PERSPECTIVE

NMT is one of the application layer entities in the CAN Reference Model, see /1/.

The NMT aids in the development of distributed applications. Due to the fact that an

application is distributed, certain events have to be handled (e.g failures of parts of the

applicaton) that would not occur if the same application had not been distributed.

The application has to deal with these network management aspects, although they

have nothing to do with the goal of the application (e.g controlling a process). These aspects

are the consequence of building a distributed application and must be compared to the

advantages of building a distributed application.

3.2 NMT Objects and Services

A CAN network consists of modules that are connected by one physical CAN bus. The

NMT uses three objects to model a CAN network:

• the network object. The network object represents the set of all modules in a

CAN network. A network can contain at most 255 modules. The network object

may exist on one module only, called the NMT Master.

February 1996

NMT Service Specification

- DS203-1 p. 3 -

• the remote node object. Each module in the network that is managed by the

NMT services is represented by a remote node object on the NMT Master.

• the node object. Each module that is managed by the NMT services is

represented by a node object on that module (including the NMT Master). A

module where a node object exists is called an NMT Slave.

Each NMT Slave and its node object is uniquely identified in the network by its NMT

Address. The syntax of an NMT Addres is defined in /3/. The NMT Address of an NMT Slave

cannot be changed by the NMT services but can be configured via the LMT Service Element

(see /1/) or in an application specific way that does not fall within the scope of the CiA

Standard on the CAN Application Layer for Industrial Applications.

For each NMT Slave there must exist one remote node object with the same NMT

Address on the NMT Master. A node object and the remote node object that have the same

NMT Address are called peers. Each remote node object communicates with its peer via the

NMT Protocol as defined in /2/. The NMT Protocol uses a Node-ID to address an NMT

Slave. The syntax of a Node-ID is defined in /3/. A unique Node-ID is assigned to the node

object of each NMT Slave and its peer by the NMT Master. Peers have the same Node-ID.

The NMT model of a CAN network is depicted in fig. 1. Note that it is possible that a module

is an NMT Master and an NMT Slave at the same time.

Fig. 1: The NMT Model

February 1996

NMT Service Specification

- DS203-1 p. 4 -

The NMT offers the following services:

• Module Control Services: through these services, the NMT Master initializes

NMT Slaves that want to take part in the distributed application and allows them

to communicate with each other through the CMS Service Element (see /1/). To

this purpose, an NMT Slave has to define all the CMS objects it needs. The

COB's required by the CMS protocol for these CMS objects have to obtain COB

identifiers and inhibit-times. These can be assigned statically by the application or

dynamically by the Distributor Service Element (see /1/). Once the COB

identifiers have been obtained, the NMT Master can indicate the NMT Slave that

it may or may not access the network through the CMS Service Element.

Through the Module Control Services the NMT Master controls the sequence of

these actions for each NMT Slave. Through the Module Control services, the

NMT Master and NMT Slave also negotiate about parameters for the NMT

Protocol.

• Error Control Services: through these services, the NMT detects failures in a

CAN network. Local failures are caused by errors detected in the Data Link or

Physical Layer (see /1/) of a module or by other application specific conditions on

that module that prevent it from taking part in the distributed application. These

conditions do not fall within the scope of the CiA Standard on the CAN

Application Layer for Industrial Applications. Remote failures are failures

detected by the Node Guarding Protocol (see section 6 of this docu ment).

• Configuration Control Services: through these services, the NMT can up and

download configuration data from respectively to a module in the CAN network.

The meaning of the configuration data that is up- or downloaded is application

specific and does not fall within the scope of the CiA Standard on the CAN

Application Layer for Industrial Applications. It may be executable code,

parameters, data or anything else.

3.3 NMT Capabilities

NMT capabilities indicate categories of network management functionality that may or

may not be present in the network. Capabilities that affect all modules in a network are called

network capabilities and can only be configured on the NMT Master. Capabilities that affect

only one module in the network are called node capabilities and can only be configured on an

NMT Slave. The following capabilities are defined:

• Network Management capability. This network capability implements the

mandatory module control services on the NMT Master. These services can only

be executed with NMT Slaves that have the:

February 1996

NMT Service Specification

- DS203-1 p. 5 -

• Node Management capability. This node capability implements the mandatory

module control services on an NMT Slave. These services can only be executed if

the NMT Master has the Network Management capability.

• Network Error capability. This network capability implements the mandatory

error control services on the NMT Master. These services can only be executed

with NMT Slaves that have the:

• Node Error capability. This node capability implements the mandatory error

control services on an NMT slave. These services can only be executed if the

NMT Master has the Network Error capability

• Network Configuration capability. This network capability implements the

mandatory configuration control services on the NMT Master. These services can

only be executed with NMT Slaves that have the:

• Node Configuration capability. This node capability implements the mandatory

configuration control services on an NMT Slave. These services can only be

executed if the NMT Master has the Network Configuration capability

How to configure NMT capabilities on an NMT Master and NMT Slave does not fall

within the scope of the CiA Standard on the CAN Application Layer for Industrial

Applications.

3.4 Network Classes

The network class indicates the network capabilities that have been configured on the

NMT Master:

• Class 0: no Network Management capability. As a consequence, module control,

error control, configuration control, and dynamic identifier/inhibit time

distribution is not possible for any of the modules in the network.

• Class 1: Network Management capability, no Network Error capability, no

Network Configuration capability. This is a network where error control and

configuration control is not possible for any of the modules in the network.

Module control and dynamic identifier/inhibit-time distribution is possible.

• Class 2: Network Management capability, Network Error capability, no Network

Configuration capability. This is a network where module control, error control,

and dynamic identifier/inhibit-time distribution is possible. Configuration control

is not possible for any of the modules in the network.

February 1996

NMT Service Specification

- DS203-1 p. 6 -

• Class 3: Network Management capability, no Network Error capability, Network

Configuration capability. This is a network where module control, configuration

control, and dynamic identifier/inhibit-time distribution is possible. Error control

is not possible for any of the modules in the network.

• Class 4: Network Management capability, Network Error capability, Network

Configuration capability. This is a network where module control, error control,

configuration control and dynamic identifier/inhibit-time distribution is possible.

3.5 Node Classes

The node class indicates the node capabilities that have been configured on an NMT

Slave:

• Class 0: no Node Management capability. This is a module that cannot be

managed through the module control services of the NMT Master. As a

consequence, error control, configuration control, and dynamic identifier/in hibit-

time distribution is not possible for this module.

• Class 1: Node Management capability, no Node Error capability, no Node

Configuration capability. This is a module that can be managed through the

module control services of the NMT Master and for which dynamic

identifier/inhibit-time distribution is possible. Error control and configuration

control is not possible for this module.

• Class 2: Node Management capability, Node Error capability, no Node

Configuration capability. This is a module that can be managed through the

module and error control services of the NMT Master and for which dynamic

identifier/inhibit-time distribution is possible. Configuration control is not possible

for this module.

• Class 3: Node Management capability, no Node Error capability, Node

Configuration capability. This is a module that can be managed through the

module and configuration control services of the NMT Master and for which

dynamic identifier/inhibit-time distribution is possible. Error control is not

possible for this module.

• Class 4: Node Management capability, Node Error capability, Node

Configuration capability. This is a module that can be managed through the

module-, error-, and configuration control services of the NMT Master and for

which dynamic identifier/inhibit-time distribution is possible.

February 1996

NMT Service Specification

- DS203-1 p. 7 -

3.6 NMT Service Descriptions

The NMT services are described in a tabular form that contains the parameters of each

service primitive that is defined for that service. The primitives that are defined for a particular

service determine the service type (e.g unconfirmed, confirmed, etc.). How to interprete the

tabular form and what service types exist is defined in /1/. In the service descriptions, [a, b]

denotes the range of integers from a to b with a and b included. If a > b, the range is empty.

4. NMT OBJECTS

4.1 Network Object

Network Attributes:

• remote node set: the set of remote node objects that form the network

• class: the network class. A value in the range [0, 4].

4.2 Remote Node Object

Remote Node Attributes

• NMT Address: see /3/. This attribute uniquely identifies the remote node object

in the remote node set.

• state: one of the values {DISCONNECTED, CONNECTED, PREPARED,

OPERATIONAL}. This attribute indicates the state of the remote node object.

The state is controlled by the NMT services according to the state diagrams in

section 6 of this document.

• Node-ID: a value in the range [1, 255]. This attribute uniquely identifies the

remote node object in the remote node set of the network object if and only if the

state of the remote node object is not DISCONNECTED. It is identical to the

Node-ID attribute of its peer.

4.3 Node Object

Node Attributes

• NMT Address: see /3/. This attribute uniquely identifies the NMT Slave and its

node object in the network.

• state: one of the values {DISCONNECTED, CONNECTING, PREPARING,

PREPARED, OPERATIONAL}. This attribute indicates the state of the NMT

February 1996

NMT Service Specification

- DS203-1 p. 8 -

Slave and its node object. The state is controlled by the NMT services according

to the state diagrams in the section 6 of this document.

• Node-ID: a value in the range [1, 255]. This attribute uniquely identifies the

NMT Slave and its node object in the network if and only if the state of the node

object is neither DISCONNECTED nor CONNECTING. It is identical to the

Node-ID attribute of its peer.

• class: the node class. A value in the range [0, 4].

In the remainder of this document, the attributes of a node object of an NMT Slave are also

considered to be attributes of the NMT Slave. E.g the state of an NMT Slave denotes the state

of its node object.

February 1996

NMT Service Specification

- DS203-1 p. 9 -

5. NMT SERVICES

There can be atmost one confirmed NMT service outstanding in the complete network.

5.1 Module Control Services

The mandatory module control services need to be implemented on the NMT Master if

and only if the Network Management capability has been configured on the NMT Master. The

mandatory module control services need to be implemented on an NMT Slave if and only if the

Node Management capability has been configured on that NMT Slave.

Create Network

Parameter Request

Argument

 class

Mandatory

 mandatory

Through this service the NMT Master creates a network object with the requested

attributes. The service will only be executed if no network object exists. After completion of

the service, the remote node set will be empty. The service is local and mandatory.

Add Remote Node

Parameter Request

Argument

 NMT_Address

Mandatory

 mandatory

Through this service the NMT Master creates a remote node object with the requested

attributes and inserts it in the remote node set of the network object. The service will only be

executed if a network object exists and if there are less than 255 remote node objects. After

completion of the service, the state of the remote node object will be DISCONNECTED. The

service is local and mandatory.

Remove Remote Node

Through this service the NMT Master removes the remote node object identified by

NMT_Address from the remote node set of the network object. The service will only be

February 1996

NMT Service Specification

- DS203-1 p. 10 -

Parameter Request

Argument

 NMT_Address

Mandatory

 mandatory

executed if NMT_Address identifies a remote node object whose state is DISCONNECTED.

The service is local and mandatory.

Create Node

Parameter Request

Argument

 NMT_Address

 class

Mandatory

 mandatory

 mandatory

Through this service an NMT Slave creates a node object with the requested attributes.

The service will only be executed if no node object already exists. After completion of the

service, the state of the NMT Slave will be DISCONNECTED. The service is local and

mandatory.

Delete Node

Parameter Request

Argument Mandatory

Through this service an NMT Slave deletes its node object. The service will only be

executed if the state of the NMT Slave is DISCONNECTED. The service is local and

mandatory.

Identify Remote Nodes

Through this service the NMT Master requests all NMT Slaves whose NMT Address

meets the NMT_Address_selection and whose state is CONNECTING, to identify them selves

through the 'Identify Node' service. The service is unconfirmed and optional.

February 1996

NMT Service Specification

- DS203-1 p. 11 -

Parameter Request/Indication

Argument

 NMT_Address_selection

Mandatory

 mandatory

Identify Node

Parameter Request/Indication

Argument Mandatory

Through this service an NMT Slave indicates the NMT Master that there is an NMT

Slave whose state is CONNECTING. The service will only be executed if the state of the

NMT Slave is CONNECTING. The service is unconfirmed and optional.

Connect Node

Parameter Request

Argument

 download

Mandatory

 optional

Through this service the NMT Slave sets its state from DISCONNECTED to

CONNECTING. The NMT Master may optionally be requested to download a configuration

to the NMT Slave. The service will only be executed if the state of the NMT Slave is

DISCONNECTED. The service is local and mandatory.

Connect Remote Node

Through this service the NMT Master sets the state of the NMT Slave identified by

NMT_Address from CONNECTING to PREPARING. The service will only be executed if

NMT_Address identifies a remote node object whose state is DISCONNECTED.

The service is confirmed and mandatory. The Remote Result parameter will confirm the

success or failure. If the state of the NMT Slave is not CONNECTING the service will fail. In

case of success the following holds:

February 1996

NMT Service Specification

- DS203-1 p. 12 -

Parameter Request/Indication Response/Confirm

Argument

 NMT_Address

Remote Result

 success

 download

 failure

 reason

Mandatory

 mandatory

Mandatory

 selection

 optional

 selection

 optional

• the state of the remote node object identified by NMT_Address will be

CONNECTED

• the state of the NMT Slave identified by NMT_Address will be PREPARING.

• the Node-ID attribute of the remote node object identified by NMT_Address and

its peer have been assigned a value.

In case of successs it will be confirmed whether the NMT Slave needs a configuration

to be downloaded. In case of a failure, the state of the remote node object identified by

NMT_Address and its peer will be DISCONNECTED and optionally the reason may be

confirmed.

Prepare Remote Node

Through this service the NMT Master sets the state of the NMT Slave identified by

Node_ID from PREPARING to PREPARED. The service will only be executed if Node_ID

identifies a remote node object whose state is CONNECTED.

Prior to the state transition, the NMT Slave is allowed to obtain identifiers and inhibit

times from the DBT Service Element (see /1/) for the COB's required by the CMS protocol for

the CMS objects as defined on that NMT Slave. The NMT Master may optionally request that

previously obtained identifiers and inhibit times are discarded. If this is not requested, the NMT

Slave itself may decide whether or not to discard them. If the NMT Slave does not obtain

identifiers and inhibit times from the DBT Service Element, this parameter must be ignored by

the NMT Slave.

The service is confirmed and mandatory. The Remote Result parameter will confirm the

success or failure of the request. If the state of the NMT Slave is not PREPARING the

February 1996

NMT Service Specification

- DS203-1 p. 13 -

Parameter Request/Indication Response/Confirm

Argument

 Node_ID

 discard

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 optional

Mandatory

 selection

 selection

 optional

service will fail. If the NMT Slave does not obtain identifiers and inhibit times from the DBT

Service Element, the service will succeed. In case of success, the state of the remote node

object identified by Node-ID and its peer will be PREPARED. In case of a failure, the state of

the remote node object identified by Node_ID and its peer will be DISCONNECTED and

optionally the reason may be confirmed.

Start Remote Node

Parameter Indicatio/Requestn

Argument

 Node_ID

 all

Mandatory

 selection

 selection

The service will only be executed for the selected remote node objects whose state is

PREPARED. Through this service the NMT Master sets the state of the selected NMT Slaves

from PREPARED to OPERATIONAL. Only NMT Slaves whose state is OPER ATIONAL

may execute services of the CMS Service Element (see /1/).

The service is unconfirmed and mandatory. If the state of an NMT Slave is not

PREPARED no state transition will occur on the NMT Slave. After completion of the service,

the state of the selected remote node objects will be OPERATIONAL.

Stop Remote Node

The service will only be executed for the selected remote node objects whose state is

OPERATIONAL. Through this service the NMT Master sets the state of the selected NMT

February 1996

NMT Service Specification

- DS203-1 p. 14 -

Slaves from OPERATIONAL to PREPARED. NMT Slaves whose state is not

OPERATIONAL may not execute services of the CMS Service Element (see /1/).

Parameter Request/Indication

Argument

 Node _ID

 all

Mandatory

 selection

 selection

The service is unconfirmed and mandatory. If the state of an NMT Slave is not

OPERATIONAL no state transition will occur on the NMT Slave. After completion of the

service, the state of the selected remote node objects will be PREPARED.

Disconnect Remote Node

Parameter Request/Indication

Argument

 Node_ID

 all

Mandatory

 selection

 selection

The service will only be executed for the selected remote node objects. Through this

service the NMT Master sets the state of the selected NMT Slaves to DISCONNECTED

independent of their present state and undefines their Node-ID attribute.

The service is unconfirmed and mandatory. After completion of the service, the state of

the selected remote node objects will be DISCONNECTED and their Node-ID attributes are

undefined.

Disconnect Node

Parameter Request

Argument Mandatory

Through this service, the NMT Slave sets the state of the node object to DISCON

NECTED independent of its present state and undefines its Node-ID attribute. The service will

only be executed if a node object exist. The service is local and mandatory.

February 1996

NMT Service Specification

- DS203-1 p. 15 -

5.2 Error Control Services

The mandatory error control services need to be implemented on the NMT Master if

and only if the Network Error capability has been configured on the NMT Master. The

mandatory error control services need to be implemented on an NMT Slave if and only if the

Node Error capability has been configured on that NMT Slave.

Network Event

Parameter Indication

Argument

 remote_error

 Node_ID

 local error

 state

 occurred

 resolved

Mandatory

 selection

 mandatory

 selection

 mandatory

 selection

 selection

The service is provider initiated and mandatory and does not affect the state of

the network object. A network object must exist. Through this service, the NMT

service provider on the NMT Master indicates that one of the following has occurred:

• a remote error occurred or has been resolved for the remote node object

identified by Node_ID and its peer.

• a local error occurred or has been resolved on the NMT Master.

Node Event

The service is provider initiated and mandatory and does not affect the state of the

network object. A node object must exist. Through this service, the NMT service provider on

an NMT Slave indicates that one of the following has occurred:

• a remote error occurred or has been resolved for the NMT Master.

• a local error occured or has been resolved on the NMT Slave.

February 1996

NMT Service Specification

- DS203-1 p. 16 -

Parameter Indication

Argument

 remote_error

 local error

 state

 occurred

 resolved

Mandatory

 selection

 selection

 mandatory

 selection

 selection

5.3 Configuration Control Services (non-segmented)

When using these services the NMT is responsible for the segmentation of the

configuration. All non-segmented configuration control services are optional.

Configuration Download

Parameter Request/Indication Response/Confirm

Argument

 Node_ID

 data

 size

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 mandatory

 optional

Mandatory

 selection

 selection

 optional

Through this service the NMT Master downloads configuration data from the NMT

Master to the NMT Slave identified by Node_ID. The data and optionally its size are indicated.

The service will only be executed if Node_ID identifies a remote node object. The

service is confirmed and optional. The Remote Result parameter will indicate the success or

failure of the request. In case of a failure, optionally the reason may be indicated.

Configuration Upload

Through this service the NMT Master uploads configuration data from the the NMT

Slave identified by Node_ID to the NMT Master.

February 1996

NMT Service Specification

- DS203-1 p. 17 -

Parameter Request/Indication Response/Confirm

Argument

 Node_ID

Remote Result

 success

 data

 size

 failure

 reason

Mandatory

 mandatory

Mandatory

 selection

 mandatory

 optional

 selection

 optional

The service will only be executed if Node_ID identifies a remote node object. The

service is confirmed and optional. The Remote Result parameter will indicate the success or

failure of the request. In case of success, the data and optionally its size are confirmed. In case

of a failure, optionally the reason may be confirmed.

5.4 Configuration Control Services (segmented)

When using these services the application is responsible for the segmentation of the

configuration. The mandatory segmented configuration control services need to be im-

plemented on the NMT Master if and only if the Network Configuration capability has been

configured on the NMT Master. They need to be implemented on an NMT Slave if and only if

the Node Configuration capability has been configured on that NMT Slave.

Initiate Configuration Download

Parameter Request/Indication Response/Confirm

Argument

 Node_ID

 size

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 optional

Mandatory

 selection

 selection

 optional

February 1996

NMT Service Specification

- DS203-1 p. 18 -

Through this service the NMT Master prepares the NMT Slave identified by Node_ID

for downloading a configuration from the NMT Master. Optionally the size of the

configuration to be downloaded may be indicated.

The service will only be executed if Node_ID identifies a remote node object. The

service is confirmed and mandatory. The Remote Result parameter will indicate the success or

failure of the request. In case of a failure, optionally the reason may be confirmed.

Initiate Configuration Upload

Parameter Request/Indication Response/Confirm

Argument

 Node_ID

Remote Result

 success

 size

 failure

 reason

Mandatory

 mandatory

Mandatory

 selection

 optional

 selection

 optional

Through this service the NMT Master prepares the NMT Slave identified by Node_ID

for uploading a configuration to the NMT Master. The service will only be executed if

Node_ID identifies a remote node object. The service is confirmed and mandatory. The

Remote Result parameter will indicate the success or failure of the request. In case of success,

optionally the size of the configuration to be uploaded is confirmed. In case of a failure,

optionally the reason may be confirmed.

Download Configuration Segment

Through this service the NMT Master transfers the data of the next segment to the

NMT Slave identified by Node_ID. The data and optionally its size are indicated. The continue

parameter indicates whether there are still more segments to be downloaded or that this was

the last segment to be downloaded. A successful 'Initiate Configuration Download' service

must have been executed prior to this service.

The service will only be executed if Node_ID identifies a remote node object. The

service is confirmed and mandatory. The Remote Result parameter will indicate the success or

failure of the request. In case of a failure, optionally the reason is confirmed. In case of

success, the NMT Slave identified by Node_ID has accepted the segment data and is ready to

accept the next segment.

February 1996

NMT Service Specification

- DS203-1 p. 19 -

Parameter Request/Indication Response/Confirm

Argument

 Node_ID

 data

 size

 continue

 more

 last

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 mandatory

 optional

 mandatory

 selection

 selection

Mandatory

 selection

 selection

 optional

Upload Configuration Segment

Parameter Request/Indication Response/Confirm

Argument

 Node_ID

Remote Result

 success

 data

 size

 continue

 more

 last

 failure

 reason

Mandatory

mandatory

Mandatory

 selection

 mandatory

 optional

 mandatory

 selection

 selection

 selection

 optional

Through this service the NMT Master requests the NMT Slave identified by Node_ID

to supply the data of the next segment to the NMT Master. A successful 'Initiate Configuration

Upload' service must have been executed prior to this service.

The service will only be executed if Node_ID identifies a remote node object. The

service is confirmed and mandatory. The Remote Result parameter will indicate the success or

failure of the request. In case of a failure, optionally the reason may be confirmed. In case

February 1996

NMT Service Specification

- DS203-1 p. 20 -

of success, the data and optionally its size are confirmed. The continue parameter confirms

whether there are still more segments to be uploaded or that this was the last segment to be

uploaded.

Abort Configuration Transfer

This service aborts the up- or download of a configuration to or from the NMT Slave

identified by Node_ID. The service may be executed at any time by the NMT Master. An

NMT Slave will only execute this service as a response to any of the other configuration

control services. Optionally the reason may be indicated. On the NMT Master the service will

only be executed if Node_ID identifies a remote node object. On the NMT Slave the service

will only be executed if a node object exists and the Node_ID parameter must be ignored.

Parameter Request/Indication

Argument

 Node_ID

 reason

Mandatory

 mandatory

 optional

The service is unconfirmed and mandatory. If the NMT Master has a confirmed

configuration service outstanding for the NMT Slave identified by Node_ID, the Abort

Indication is taken to be the Confirm of that service.

Verify Configuration

Parameter Request/Indication Response/Confirm

Argument

 Node-ID

 check_sum

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 mandatory

Mandatory

 selection

 selection

 optional

Through this service the NMT Master requests the NMT Slave identified by Node_ID

to verify if check_sum matches with the last configuration that was successfully downloaded.

The value of the check_sum is application specific and does not fall within the scope of the

CiA Standard on the CAN Application Layer for Industrial Applications.

February 1996

NMT Service Specification

- DS203-1 p. 21 -

The service will only be executed if Node_ID identifies a remote node object. The

service is confirmed and optional. The Remote Result parameter will confirm the succes or

failure of the verification. In case of a failure optionally the reason may be confirmed.

6. STATE TRANSITION DIAGRAMMS

Each remote node object on the NMT Master and its peer on an NMT Slave maintain a

state transition diagram, see fig.2 and fig.3. The state transitions in these diagrams are caused

by the NMT services as indicated in these diagrams. Some services can only cause a state

transition in one diagram, while others may cause a state transition in both diagrams. Services

that do not cause a state transition are not drawn in the state transition diagrams. An error

response/confirm indicates that for the service involved, the 'failure' selection in the service

specification will be selected.

Depending on the NMT services that were executed, the NMT Master assumes that the

node object of an NMT Slave is in a certain state. To detect if this assumption is true, the

NMT Master regularly retrieves the state of an NMT Slave and compares it to the state of its

peer. This meachanism is called Node Guarding and the protocol the Node Guarding Protocol.

If the comparison fails or if the state of an NMT Slave could not be retrieved at all, this is

indicated to the NMT Master through the 'Network Event' service as a remote error. If the

node state of an NMT Slave has not been retrieved during a certain period of time by the NMT

Master, this is indicated to the NMT Slave through the 'Node Event' service as a remote error.

Note that the 'Network Event' and 'Node Event' services do not cause a state transition.

The Node Guarding Protocol is active if and only if the NMT Master has the Network

Error capability, the NMT Slave has the Node Error capability, and if the (remote) node state

is not DISCONNECTED or CONNECTING, see fig.2 and fig.3. Note that the 'Disconnect

Remote Node' service causes the Node Guarding Protocol to stop for that NMT Slave, since

the state of the remote node object becomes DISCONNECTED.

If the Node Guarding Protocol functions again normally after a remote error has been

reported and no state transition has occurred, this is indicated to the NMT Master and NMT

Slave through the 'Network Event' and the 'Node Event' service respectively.

February 1996

NMT Service Specification

- DS203-1 p. 22 -

disconnected

connected

prepared

operational
*

*

*

(1) (2)

(3)

(4)

(5)(6)

* = Node Guarding active if configured

(0) = Disconnect_Remote_Node request

(0) = Error Confirm

(1) = Add_Remote_Node request

(2) = Remove_Remote_Node request

(3) = Connect_Remote_Node confirm
(4) = Prepare_Remote_Node confirm

(5) = Start_Remote_Node request

(6) = Stop_Remote_Node request

Fig. 2: Remote Node State Diagram

(0)

(0)

(0)

disconnected

connecting

preparing

operational
*

*

prepared
*

(6)(7)

(0)

(0)

(0)

(0)

(1) (2)

(3)

(4)

(5)

* = Node Guarding active if configured

(0) = Disconnect_Remote_Node indication

(0) = Disconnect_Node request

(0) = Error response

(1) = Create_Node request

(2) = Delete_Node request

(3) = Connect_Node request
(4) = Connect_Remote_Node response

(5) = Prepare_Remote_Node response

(6) = Start_Remote_Node indication

(7) = Stop_Remote_Node indication

Fig. 3: Node State Diagram

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS203-2

February 1996

NMT Protocol Specification

February 1996

NMT Protocol Specification

- DS203-2 p. 2 -

1. SCOPE

This document contains the protocol specification of the Network Management

(NMT). NMT is part of the CAN Application Layer. This document is part of a set of

documents that standardize the CAN Application Layer for Industrial Applications.

2. REFERENCES

/1/: CiA/DS201, CAN Reference Model

/2/: CiA/DS203-1, NMT Service Specification

/3/: CiA/DS207, Application Layer Naming Conventions

3. GENERAL DESCRIPTION

3.1 NMT Protocol Perspective

The Network Management (NMT) service element in the CAN Reference Model (see

/1/), provides the NMT services. The NMT Protocol is executed between between the NMT

Master and each of the NMT Slaves (see /2/) to implement these services.

3.2 NMT Slave Synchronization

Since in the NMT Protocol all NMT Slaves use the same COB to send information to

the NMT Master, there must be only one NMT Slave at a time that communicates with the

NMT Master. For all protocols except the Identify Node protocol, the NMT Master takes the

initiative. The Identify Node protocol does not transfer information and will therefore cause no

synchronization conflicts. For all other services an NMT Slave is only allowed to respond if it

has first been addressed by the NMT Master through its unique NMT Address or Node-ID.

Since there can be atmost one confirmed NMT service outstanding at a time (see /2/), the

synchronization is established.

3.3 NMT Protocol Descriptions

A protocol description specifies the sequence of COB's and their format that are

exchanged between the NMT Master and NMT Slave(s) for a particular NMT service. In the

description of the COB data format, bytes are numbered from 0 to and including 7. Bits

February 1996

NMT Protocol Specification

- DS203-2 p. 3 -

within a byte are numbered from 0 to and including 7. Byte 0 is transmitted first, byte 7 is

transmitted last. Within a byte, bit 0 is the least significant bit, bit 7 is the most significant bit.

In the protocol descriptions [a, b] denotes the range of integers from a to b with a and b

included. If a > b, the range is empty.

The terms 'lsb' and 'msb' stand for 'least significant byte' and 'most significant byte' respectively

and are used to define how an integer number is stored in more than one byte for the NMT

Protocol. The order of significance is from lsb to msb.

The NMT protocols transfer the NMT Address (both module-name and module-ID) of an

NMT Slave. The transfer syntax of these attributes is defined in /3/.

3.4 Usage of Command Specifiers

The command specifier is transmitted within the first data byte of the NMT protocol in

COB-ID=2026/2025. For each service a unique value is specified for the command specifier.

Unused values are reserved up to 191 for further use by CiA. Values from 192 to 255 are user

specific.

February 1996

NMT Protocol Specification

- DS203-2 p. 4 -

4. MODULE CONTROL PROTOCOLS

4.1 Node Connect Protocol

This protocol is used to implement the 'Connect Remote Node' service, see /2/. This

protocol also serves to exchange and negotiate parameters for the other NMT protocols.

• cs: NMT command specifier.

 1: select an NMT Slave by the module-name of its

NMT-Address. Bytes [1, 7] contain the module name,

see /3/. The selected NMT Slave responds with the same cs in case

of a positive response.

 2: assign NMT protocol parameters

 4: select an NMT Slave by the module-ID of its NMT-Address.

Byte 1 contains the module-ID, see /3/. Bytes [2, 7] are

reserved for further use by CiA. The selected NMT Slave responds

with the same cs in case of a positive response.

February 1996

NMT Protocol Specification

- DS203-2 p. 5 -

• mod-ID: the module-ID of the NMT Address of the NMT Slave, see /3/.

• req. guard time: the guard time in milli-seconds for the Node Guarding

Protocol as requested by the NMT Slave. It is valid if and only if the node class

indicates that the Node Error capability has been configured on the NMT Slave,

see /2/, otherwise it is reserved for further use by CiA.

• req. life time factor: when multiplied with the requested guard time gives the

life time for the Node Guarding Protocol. It is valid if and only if the node class

indicates that the Node Error capability has been configured on the NMT Slave,

see /2/, otherwise it is reserved for further use by CiA.

• node class: indicates the node capabilities that have been configured on the

NMT Slave according to the definition in /2/.

• d: indicates whether or not the NMT Slave needs a configuration to be

downloaded

 0: no download requested

 1: download requested

• Node-ID: the value of the Node-ID attribute that the NMT Master assigns to

the NMT Slave, see /2/. The Node-ID is equal to the module-ID which is

passed to the NMT-Master with the NMT-Address attribute when the

corresponding remote node object is created.

• guard COB-ID: the value of the COB-ID for the Node Guarding Protocol. It

must be a value between 1761 and 2015 inclusive. It is valid if and only if the

network class indicates that the Network Error capability has been configured

on the NMT Master, see /2/, otherwise it is reserved for further use by CiA.

• ass. guard time: the guard time in milli-seconds for the Node Guarding

Protocol as assigned by the NMT Master. It is valid if and only if the network

class indicates that the Network Error capability has been confirgured on the

NMT Master, see /2/, otherwise it is reserved for further use by CiA.

• ass. life time factor: when multiplied with the assigned guard time gives the life

time for the Node Guarding Protocol as assigned by the NMT Master. It is valid

if and only if the network class indicates that the Network Error capability has

been confirgured on the NMT Master, see /2/, otherwise it is reserved for

further use by CiA.

• network class: indicates the network capabilities that have been configured on

the NMT Master according to the definition in /2/.

February 1996

NMT Protocol Specification

- DS203-2 p. 6 -

• a: abortion flag used by the NMT master for signalling an abort of the Connect

Remote Node Protocol if the NMT master detects a protocol inconsistency

during the first request-response cycle; the NMT slave has to respond with error

code 253.

 0: second request valid

 1: abort Connect Remote Node request

• error code:

 0: protocol successfully completed

 1..252: reserved for further use by CiA

 253: protocol error indication by NMT master

 254: request not allowed by the node state of NMT Slave

 255: other error occurred

• specific error code: a value between 0 and 255 inclusive. If the error code

equals 255, it gives an implementation specific error code, otherwise it is

reserved for further use by CiA.

• X: not used, always 0

• reserved: reserved for further use by CiA.

4.2 Node Prepare Protocol

This protocol is used to implement the 'Prepare Remote Node' service, see /2/.

• cs: NMT command specifier

 3: prepare

February 1996

NMT Protocol Specification

- DS203-2 p. 7 -

• Node-ID: the Node-ID of the NMT Slave as assigned by the NMT Master in

the Node Connect Protocol.

• k: indicates whether the COB-ID's previously obtained from the DBT must be

discarded or not

 0: discard previous obtained identifiers

 1: the NMT Slave may decide to keep the old identifiers

• error code:

 0: Prepare Protocol completed successfully

 1: DBT protocol error occurred

 2: DBT Master is not available

 3..253: reserved for further use by CiA

 254: request not allowed by the node state of the NMT Slave

 255: other error occurred

• specific error code: a value between 0 and 255 inclusive. If the error code

equals 1 it gives the error code of the DBT protocol. If error code equals 255, it

gives an implementation specific error code. Otherwise it is reserved for further

use by CiA.

• reserved: reserved for further use by CiA.

4.3 Node Start Protocol

This protocol is used to implement the 'Start Remote Node' service, see /2/.

• cs: NMT command specifier

 1: start

• Node-ID: the Node-ID of the NMT Slave as assigned by the NMT Master in

the Node Connect Protocol, or 0. If 0, the protocol addresses all NMT Slaves.

February 1996

NMT Protocol Specification

- DS203-2 p. 8 -

4.4 Node Stop Protocol

This protocol is used to implement the 'Stop Remote Node' service, see /2/.

• cs: NMT command specifier

 2: stop

• Node-ID: the Node-ID of the NMT Slave as assigned by the NMT Master in

the Node Connect Protocol, or 0. If 0, the protocol addresses all NMT Slaves.

4.5 Node Disconnect Protocol

This protocol is used to implement the 'Disconnect Remote Node' service, see /2/.

February 1996

NMT Protocol Specification

- DS203-2 p. 9 -

• cs: NMT command specifier

 3: disconnect

• Node-ID: the Node-ID of the NMT Slave as assigned by the NMT Master in

the Node Connect Protocol, or 0. If 0, the protocol addresses all NMT Slaves.

4.6 Identify Remote Nodes Protocol

This protocol is used to implement the 'Identify Remote Nodes' service, see /2/.

• cs: NMT command specifier

 6: identify

• NMT_Address_sel: selects a range of module-ID's. Byte 1 contains the lower

boundary. Byte 2 contains the upper boundary. The boundaries are included in

the range. All NMT Slaves whose NMT Address has a module-ID that lies

within this range, are requested to identify themselves, see /2/.

• reserved: reserved for further use by CiA.

February 1996

NMT Protocol Specification

- DS203-2 p. 10 -

4.7 Identify Node Protocol

This protocol is used to implement the 'Identify Node' service, see /2/.

• NOTE: there is no protocol data to allow several NMT Slaves to execute this

protocol at the same time. For this service, the NMT Slave takes the initiative.

February 1996

NMT Protocol Specification

- DS203-2 p. 11 -

5. ERROR CONTROL PROTOCOLS

5.1 Node Guarding Protocol

This protocol is used to detect remote errors in the network, see /2/. Each NMT Slave

uses one remote COB for the Node Guarding Protocol. This protocol implements the provider

initiated Error Control services. The state diagrams in /2/ determine when this protocol is

active or inactive.

The NMT Master polls each NMT Slave at regular time intervals. This time-interval is

called the guard time and may be different for each NMT Slave. The response of the NMT

Slave contains the state of the node object of that NMT Slave, see /2/. If this state does not

match the state of the corresponding remote node object or if no response is received by the

NMT Master, it will be indicated that a remote error has occurred through the 'Network

February 1996

NMT Protocol Specification

- DS203-2 p. 12 -

Event' service, see /2/. If the NMT Slave hasn't been polled during its life-time, it will be

indicated that a remote error has occurred through the 'Node Event' service, see /2/. The life-

time can be different for each NMT Slave. If it has been indicated that a remote error has

occurred and the errors in the guarding protocol have disappeared, it will be indicated that the

remote error has been resolved through the 'Network Event' and 'Node Event' services, see /2/.

The guard time, the life time, and the COB-ID for the Node Guarding Protocol are

negotiated between the NMT Master and each NMT Slave in the Node Connect Protocol.

• s: the state of the node object on the NMT Slave

1: DISCONNECTED

2: CONNECTING

3: PREPARING

4: PREPARED

5: OPERATIONAL

• t: toggle bit. The value of this bit must alternate between two consecutive

responses from the NMT Slave. If it does not alter, it will be indicated that a

remote error has occurred through the 'Network Event' service, see /2/. The

value of the toggle-bit of the first reponse after the Guarding Protocol becomes

active, is 0.

February 1996

NMT Protocol Specification

- DS203-2 p. 13 -

6. CONFIGURATION CONTROL PROTOCOLS

6.1 Download Configuration Protocol

This protocol is used to implement the 'Configuration Download' service, see /2/.

Configurations are downloaded as a sequence of 'Download Configuration Segment' services

preceded by an 'Initiate Configuration Download' service. The sequence can be terminated by:

• a 'Download Configuration Segment' response/confirm with the c-bit set to 1,

confirming the succesful completion of the download sequence.

• an 'Abort Configuration Transfer' request/indication indicating the unsuccesful

completion of the download sequence.

• a new 'Initiate Configuration Download' request/indication indicating the

unsuccesful completion of the download sequence and starting a new sequence.

If in the download of two consecutive segments the toggle bit does not alter, this must

be treated as if an invalid COB was received (see Annex I). If such an error is reported to the

application, the application may decide to abort the download.

February 1996

NMT Protocol Specification

- DS203-2 p. 14 -

Initiate Configuration Download Protocol

This protocol is used to implement the 'Initiate Configuration Download' service, see

/2/.

• cs: NMT command specifier

 5: Transfer Configuration

• Node-ID: the Node-ID of the NMT Slave as assigned by the NMT Master in

the Node Connect Protocol.

• mc: NMT Master command

 1: initiate download request

• sc: NMT Slave command

 3: initiate download response

• s: size indicator

 0: configuration size is not indicated

 1: configuration size is indicated

• n: only valid if s = 1, otherwise reserved for further use by CiA. If valid it

contains the number of bytes to be downloaded

• X: not used, always 0

• reserved: reserved for further use by CiA.

February 1996

NMT Protocol Specification

- DS203-2 p. 15 -

Download Configuration Segment Protocol

This protocol is used to implement the 'Download Configuration Segment' service, see

/2/.

• cs: NMT command specifier

 5: Transfer Configuration

• Node-ID: the Node-ID of the NMT Slave as assigned by the NMT Master in

the Node Connect Protocol.

• mc: NMT Master command

 0: download segment request

• sc: NMT Slave command

 1: download segment response

• c: indicates whether there are still more segments to be downloaded.

 0: more segments to be downloaded

 1: no more segments to be downloaded

• seg-data: contains at most five bytes of segment data to be downloaded. Its

meaning has to be specified by the application.

• n: contains the number of bytes in seg-data that do not contain segment data.

Bytes [8-n, 7] do not contain segment data.

February 1996

NMT Protocol Specification

- DS203-2 p. 16 -

• t: toggle bit. This bit must alternate for each subsequent segment that is

downloaded. The first segment will have the toggle-bit set to 0. The toggle bit

will be equal for the request and the response message.

• X: not used, always 0

• reserved: reserved for further use by CiA.

6.2 Upload Configuration Protocol

This protocol is used to implement the 'Configuration Upload' service, see /2/.

Configurations are uploaded as a sequence of 'Upload Configuration Segment' services

preceded by an 'Initiate Configuration Upload' service. The sequence can be terminated by:

• an 'Upload Configuration Segment' response/confirm with the c-bit set to 1,

indicating the succesful completion of the upload sequence.

• an 'Abort Configuration Transfer' request/indication indicating the unsuccess ful

completion of the upload sequence.

• a new 'Initiate Configuration Upload' request/indication indicating the unsuc

cesful completion of the upload sequence and starting a new sequence.

If in the upload of two consecutive segments the toggle bit does not alter, this must be

treated as if an invalid COB was received (see Annex I). If such an error is reported to the

application, the application may decide to abort the upload.

February 1996

NMT Protocol Specification

- DS203-2 p. 17 -

Initiate Configuration Upload Protocol

This protocol is used to implement the 'Initiate Configuration Upload' service, see /2/.

• cs: NMT command specifier

 5: Transfer Configuration

• Node-ID: the Node-ID of the NMT Slave as assigned by the NMT Master in

the Node Connect Protocol.

• mc: NMT Master command

 2: initiate upload request

• sc: NMT Slave command

 2: initiate upload response

• s: size indicator

 0: configuration size is not indicated

 1: configuration size is indicated

• n: Only valid if s = 1, otherwise reserved for further use by CiA. If valid it

contains the number of bytes to be uploaded

• X: not used, always 0

• reserved: reserved for further use by CiA.

February 1996

NMT Protocol Specification

- DS203-2 p. 18 -

Upload Configuration Segment Protocol

This protocol is used to implement the 'Upload Configuration Segment' service, see /2/.

• cs: NMT command specifier

 5: Transfer Configuration

• Node-ID: the Node-ID of the NMT Slave as assigned by the NMT Master in

the Node Connect Protocol.

• mc: NMT Master command

 3: upload segment request

• sc: NMT Slave command

 0: upload segment response

• c: indicates whether there are still more segments to be uploaded.

 0 : more segments to be uploaded

 1 : no more segments to be uploaded

• seg-data: contains at most five bytes of segment data to be uploaded. Its

meaning has to be specified by the application.

• n: contains the number of bytes in seg-data that do not contain segment data.

Bytes [8-n, 7] do not contain segment data.

• t: toggle bit. This bit must alternate for each subsequent segment that is

uploaded. The first segment will have the toggle-bit set to 0. The toggle bit will

be equal for the request and the response message.

• X: not used, always 0

• reserved: reserved for further use by CiA.

February 1996

NMT Protocol Specification

- DS203-2 p. 19 -

6.3 Abort Configuration Transfer Protocol

This protocol is used to implement the 'Abort Configuration Transfer' service, see /2/.

The NMT Master sends COB-ID 2026. The NMT Slave sends COB-ID 2025.

• cs: NMT command specifier

 5: Transfer Configuration

• Node-ID: the Node-ID of the NMT Slave as assigned by the NMT Master in

the Node Connect Protocol.

• c: command

 4: abort configuration transfer request

• f: indicates the reason for the failure.

 0: unspecified error

 1: application request

 2: no resources

 3..127: reserved for further use by CiA

 128..255: implementation specific error codes

• d: only valid if f = 1 or f > 128, otherwise reserved for further use by CiA. If

valid it contains application specific information about the reason for the abort.

• X: not used, always 0

• reserved: reserved for further use by CiA.

February 1996

NMT Protocol Specification

- DS203-2 p. 20 -

6.4 Verify Configuration Protocol

This protocol is used to implement the 'Verify Configuration' service, see /2/.

• cs: NMT command specifier

 5: Transfer Configuration

• Node-ID: the Node-ID of the NMT Slave as assigned by the NMT Master in

the Node Connect Protocol.

• mc: NMT Master command

 5: verify configuration

• sc: NMT Slave command

 5: verify configuration

• checksum: the check-sum to be verified

• r: result

 0: verification successful

 1: verification failed

• f: Only valid if r = 1. If valid it indicates the reason for the failure.

 0: unspecified error

 1: checksum mismatch

 2: no configuration present

 3..127: reserved for further use by CiA

 128..255: implementation specific error codes

• X: not used, always 0

• reserved: reserved for further use by CiA.

February 1996

NMT Protocol Specification

- DS203-2 p. 21 -

ANNEX I

IMPLEMENTATION RULES

When implementing the NMT protocols, the following rules have to be followed to

guarantee interoperability. These rules deal with the following implementation aspects:

Invalid COB's

A COB is invalid if it has a COB-ID that is used by the NMT Protocol, but it contains

invalid parameter values according to the NMT Protocol. This can only be caused by errors in

the lower layers (see /1/) or implementation errors. Invalid COB's must be handled locally in an

implementation specific way that does not fall within the scope of the CiA Standard on the

CAN Application Layer for Industrial Applications. As far as the NMT Protocol is concerned,

an invalid COB must be ignored.

Time-out's

Since COB's may be ignored, the response of a confirmed NMT service may never

arrive. To resolve this situation, an implementation may, after a certain amount of time,

indicate this to the service user (time-out). A time-out is not a confirm of that NMT service. A

time-out indicates that the service has not completed yet. The application must deal with this

situation. Time-out values are considered to be implementation specific and do not fall within

the scope of the CiA Standard on the CAN Application Layer for Industrial Applications.

However, it is recommended that an implementation provides facilities to adjust these time-out

values to the requirements of the application.

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS204-1

February 1996

DBT Service Specification

February 1996

DBT Service Specification

- DS204-1 p. 2 -

1. SCOPE

This document contains the Distributor Service Specification. This document is part of

a set of documents that standardize the CAN Application Layer for Industrial Applications.

2. REFERENCES

/1/: CiA/DS201, CAN Reference Model

/2/: CiA/DS204-2, DBT Protocol Specification

/3/: CiA/DS207, Application Layer Naming Conventions

/4/: CiA/DS203-1, NMT Service Specification

/5/: CiA/DS202-1, CMS Service Specification

3. GENERAL DESCRIPTION

3.1 DBT PERSPECTIVE

The essential issue in creating an open system where modules from independent

suppliers can cooperate via CAN, is how the identifiers and inhibit-times are assigned to the

COB's that a module uses. Identifiers are used by the CAN Datalink Layer and inhibit-times are

defined by the CMS service element of the CAN Application Layer, see /5/. The identifiers and

inhibit-times must be distributed in a way that:

• prevents a conflict (i.e different functions that use the same identifiers).

• prevents a mismatch (i.e different identifiers for the same COB).

• offers the system integrator control of the dynamic behaviour of the system

since the identifier and inhibit-time of a COB determines its priority respectively

its maximum access time to the CAN bus.

Three methods can be distinguished to distribute identifiers and inhibit-times to a

module (Note: it is not required that the same method is used for all modules although this

increases the probability of clashes and conflicts):

February 1994

DBT Service Specification

- DS204-1 p. 3 -

• If a standard distribution is used, the identifiers and inhibit-times are

standardized by the module suppliers and system integrators and cannot be

changed. A standard distribution requires standardizing all functions and their

corresponding identifiers and can only succeed if sufficient identifiers are

available and if the application has a limited scope (e.g one system or a specific

application type).

• If a static distribution is used, the identifiers and inhibit-times are fixed by the

module suppliers and may be changed by the system integrator through module

specific measures such as setting dip-switches, adapting firmware, etc. A static

distribution requires that the system integrator can assign all possible identifiers.

• If a dynamic distribution is used, the identifiers and inhibit-times are

distributed via the CAN network through standard services and a protocol.

The DBT is a service element of the CAN Application Layer (see /1/) that offers

dynamic distribution of identifiers and inhibit-times to the COB's that a module uses. The

dynamic distribution does not necessarily take place every time the module is 'powered on'.

Depending on the facilities of the module, distribution may only be required once e.g when the

module is installed in the network.

3.2 DBT Objects and Services

The CMS service element defines for each CMS object the COB's that must be used for

the protocols of that object. Each module in the network that acts as a Client or Server of a

CMS object must either transmit or receive these COB's and is called a user of these COB's. A

user is uniquely identified in the network via its Node-ID, see /4/.

The DBT uses four objects to model its functionality:

• the COB Database. The COB Database contains zero or more COB

Definitions. The COB Database may exist on one module only, called the DBT

Master.

• a COB Definition. A COB Definition defines all attributes of a COB. A COB

Definition is uniquely identified in the COB Database by its identifier (COB-ID).

A COB Definition is created by the DBT Master. For each user a COB

Definition contains a User Definition created by that user. A COB definition can

optionally contain Predefinitions created by the DBT Master.

• a User Definition. A User Definition defines how one module uses that COB.

A User Definition is uniquely identified in the COB Database by the name of the

COB and the Node-ID of that user (Note: different users may use different

COB names for the same COB). The syntax of COB-names and Node-ID's are

defined in /3/.

February 1996

DBT Service Specification

- DS204-1 p. 4 -

• a Predefinition. A Predefinition defines that all User Definitions with a certain

COB-name must use the COB-ID of the COB Definition to which it belongs. A

Predefinition is uniquely identified in the COB Database by the name of the

COB.

The contents of the COB Database can be manipulated locally by the DBT Master or

remotely (possibly via the network) by a DBT Slave. A DBT Slave communicates with the

DBT Master via the DBT Protocol as depicted in Fig. 1. Note that it is possible that a module

is a DBT Master and a DBT Slave at the same time. The DBT Protocol is specified in /2/.

Fig. 1: The DBT Model

The DBT offers the following categories of services:

• Distribution Control Services: it is the task of the DBT Master to distribute a

COB-ID and inhibit-time for a COB to all its users. The COB-ID and

inhibit-time that the DBT Master distributes is determined by the requested

values from the DBT Slave and predefined values from the DBT Master. The

DBT Master can also prevent that a value will be distributed as a COB-ID and

enforce a minimum inhibit-time for a certain COB-ID.

February 1994

DBT Service Specification

- DS204-1 p. 5 -

• Consistency Control Services: through these services, a DBT Slave can detect

inconsistencies in the COB Database and inconsistencies between User

Definitions created by different users.

3.3 DBT Slave Capabilities

DBT slave capabilities indicate categories of DBT functionality that may or may not be

present in the DBT Slave.The following capabilities are defined:

• Distribution capability. This capability implements the mandatory distribution

control services on a DBT Slave.

• Consistency capability. This capability implements the mandatory consistency

control services on a DBT Slave.

How to configure DBT slave capabilities on a DBT Slave does not fall within the scope

of the CiA Standard on the CAN Application Layer for Industrial Applications.

3.4 DBT Slave Classes

The DBT slave class indicates the capabilities that have been configured on a DBT

Slave:

• Class 0: no Distribution capability. As a consequence, consistency control, and

dynamic distribution of identifiers and inhibit-times is not possible for this

module.

• Class 1: Distribution capability, no Consistency capability. This is a module for

which dynamic distribution of identifiers and inhibit-times is possible, but

consistency control is not possible.

• Class 2: Distribution capability, Consistency capability. This is a module for

which dynamic distribution of identifiers and inhibit-times and consistency

control is possible.

3.5 DBT Service Descriptions

The DBT services are described in a tabular form that contains the parameters of each

service primitive that is defined for that service. The primitives that are defined for a particular

service determine the service type (e.g unconfirmed, confirmed, etc.). How to interprete the

tabular form and what service types exist is defined in /1/. In the service descriptions, [a, b]

denotes the range of integers from a to b with a and b included. If a > b, the range is empty.

All services assume that no errors occur in the Data Link and Physical Layer. These

errors are resolved by the Network Management Service Element, see /1/.

February 1996

DBT Service Specification

- DS204-1 p. 6 -

4. DBT OBJECTS

All the DBT Objects, their attributes, and their relation are drawn in Fig. 2.

Fig. 2: The COB Database

- COB-name
- COB-name

- COB-name

4.1 COB Database

Attributes:

• state: one of the values {ENABLED, DISABLED}. This attribute indicates

whether or not the DBT Master is capable of distributing COB-ID's and

inhibit-times consistently for the COB's used by the CMS protocol.

• COB definition set: The set of all COB Definitions.

4.2 COB Definition

Attributes

• COB-ID: a value in the range [1, 1760], indicating the COB-ID of the COB.

• minimum inhibit-time: a value in the range [0, 65535] indicating the minimum

value in units of 100 µsec for the inhibit-time that must be used by a user of the

COB.

February 1994

DBT Service Specification

- DS204-1 p. 7 -

• user definition set: the set of User Definitons of this COB.

• predefinition set: the set of Predefinitons of this COB.

4.3 User Definition

Attributes

• Node-ID: see /4/. It identifies the user that created the User Definition.

• COB-name: see /3/. The name of the COB as used by the user that created the

User Definition.

• COB-length: a value in the range [0, 8]. The COB-length indicates the number

of data bytes of the COB as used by the user that created the User Definition.

• COB-type: one of the values {RECEIVE, TRANSMIT}. The COB-type

indicates whether the COB is received (RECEIVE) or transmitted

(TRANSMIT) by the user that created the User definition (Note: for a

Remote-COB, RECEIVE indicates transmitting the request for the COB and

receiving the data. TRANSMIT indicates that the request is received and the

data transmitted).

• COB-class: see /5/. The COB-class relates the number of users that transmit

and receive the COB as expected by the user that created the User Definition.

• actual inhibit-time: a value in the range [0, 65535]. It indicates the value of

the inhibit-time in units of 100 µsec as actually used by the user that created the

User Definition.

4.4 Predefinition

Attributes

• COB-name: see /3/. All User Definitions for a COB with this COB-name must

be created in the user set of the COB Definition to which the Predefinition

belongs.

February 1996

DBT Service Specification

- DS204-1 p. 8 -

5. DBT SERVICES

There can be atmost one confirmed DBT service outstanding in the complete network.

5.1 Distribution Control Services

The mandatory distribution control services need to be implemented on the DBT

Master. The mandatory distribution control services need to be implemented on a DBT Slave if

and only if the Distribution capability has been configured on that DBT Slave.

Create COB Database

Parameter Request

Argument Mandatory

Through this service, the DBT Master creates a COB Database. No COB Database

may exist. After completion of the service the state of the COB Database will be ENABLED

and it will contain no COB Definitions. The service is local and mandatory.

Enable Distribution

Parameter Request

Argument Mandatory

Through this service, the DBT Master sets the state of the COB Database to

ENABLED. What conditions can cause this service to be invoked is determined by the DBT

Master. The service is local and mandatory.

Disable Distribution

Parameter Request

Argument Mandatory

February 1994

DBT Service Specification

- DS204-1 p. 9 -

Through this service, the DBT Master sets the state of the COB Database to

DISABLED. What conditions can cause this service to be invoked is determined by the DBT

Master. The service is local and mandatory.

Create COB Definition

Parameter Request

Argument

 range

 low COB-ID

 high COB-ID

 min. inhibit-time

Mandatory

 mandatory

 mandatory

 mandatory

 mandatory

Through this service, the DBT Master creates all COB Definitions in the COB

Database with a COB-ID in the requested range, all with the same minimum inhibit-time. The

state of the COB Database must be ENABLED. After completion of the service, the user- and

predefinition set of the created COB Definitions will be empty. The service is local and

mandatory.

Delete COB Definition

Parmater Request

Argument

 range

 low COB-ID

 high COB-ID

 mandatory

 mandatory

 mandatory

Through this service, the DBT Master deletes all COB Definitions with a COB-ID in

the requested range. The state of the COB Database must be ENABLED. The service is local

and mandatory.

Create Predefinition

Through this service, the DBT Master creates a Predefinition with the requested

attributes in the predefinition set of the COB Definition identified by COB-ID. No

Predefinition and User Definition with the same COB-name may exist in the COB Database.

The state of the COB Database must be ENABLED. The service is local and mandatory.

February 1996

DBT Service Specification

- DS204-1 p. 10 -

Parameter Request

Argument

 COB-ID

 COB-name

Mandatory

 mandatory

 mandatory

Delete Predefinition

Parameter Request

Argument

 COB-name

Mandatory

 mandatory

Through this service, the DBT Master deletes the Predefinition identified by COB-name

from the COB Database. A Predefinition with the requested COB-name must exist in the

predefinition set of a COB Definition in the COB Database. The state of the COB Database

must be ENABLED. The service is local and mandatory.

Create User Definition

Parameter Request/Indication Response/Confirm

Argument

 COB-name

 COB-length

 COB-class

 COB-type

 Node_ID

 priority

 inhibit-time

Remote Result

 success

 COB-ID

 min. inhibit-time

 failure

 reason

Mandatory

 mandatory

 mandatory

 mandatory

 mandatory

 mandatory

 mandatory

 mandatory

Mandatory

 selection

 mandatory

 mandatory

 selection

 optional

February 1994

DBT Service Specification

- DS204-1 p. 11 -

Through this service, a DBT Slave creates a new User Definition with the requested

attributes in the user set of one of the COB Definitions in the COB Database. If there exists an

offending COB Definition the service will fail. A COB Definition is offending if and only if the

following conditions are met:

• its user set contains a User Definition or its predefinition set contains a

Predefinition with the same COB-name

• its user set contains User Definitions with a different value for the COB-length

and/or COB-class attributes

If there exists no offending COB Definition but there exists a matching COB definition,

this definition will be selected. A COB Definition is matching if and only if at least one of the

following conditions are met:

• its predefinition set contains a Predefinition with the same COB-name

• its user set contains a User Definition with the same COB-name

If there exists no offending and no matching COB Definition, a free COB definition will

be selected according to the following rules given in order of precedence:

• a COB definition with an empty user set and an empty predefinition set whose

COB-ID corresponds to the requested priority, see the table in annex I of this

document.

• a COB definition with an empty user set and an empty predefinition set whose

COB-ID exceeds the COB-ID's that correspond to the requested priority, see

the table in annex I of this document.

If there exists no offending, no matching, and no free COB Definition, the service will

fail.

The service is confirmed and mandatory. The state of the COB Database must be

ENABLED. The Remote Result parameter will indicate the success or failure of the selection

of a COB Definition. In case of success, the COB-ID of the selected COB Definition and its

minimum inhibit-time attribute will be confirmed. The DBT Slave must use the maximum of

the requested inhibit-time and the minimum inhibit-time attribute of the selected COB

Definition. In case of a failure optionally the reason may be confirmed.

Delete User Definition

Through this service a DBT Slave deletes all User Definitions that were created by the

user identified by Node_ID or all existing User Definitions from the COB Database. The state

of the COB Database must be ENABLED unless all existing User Definitions are to be deleted.

February 1996

DBT Service Specification

- DS204-1 p. 12 -

Parameter Request/Indication Response/Confirm

Argument

 scope

 Node_ID

 all

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 selection

 selection

Mandatory

 selection

 selection

 optional

The service is confirmed and mandatory. The Remote Result parameter will indicate the

success or failure of the request. In case of success, the requested User Definitions were

deleted. If all User Definitions have been deleted the state of the COB Database will be

ENABLED. In case of a failure, optionally the reason may be confirmed.

5.2 Consistency Control Services

The mandatory consistency control services need to be implemented on the DBT

Master. The mandatory consistency control services need to be implemented on a DBT Slave if

and only if the Consistency capability has been configured on that DBT Slave.

Verify COB Class

Parameter Request/Indication Response/Confirm

Argument

Remote Result

 success

 failure

 COB-ID

 reason

Mandatory

Mandatory

 selection

 selection

 optional

 optional

Through this service a DBT Slave requests the DBT Master to verify for each COB

Definition in the COB Database, if the number of User Definitions in its user set whose type

attribute is RECEIVE respectively TRANSMIT, matches the class attribute of that COB

Definition. The state of the COB Database must be ENABLED.

February 1994

DBT Service Specification

- DS204-1 p. 13 -

The service is confirmed and mandatory. The Remote Result parameter will confirm the

success or failure of the verification. In case of a failure, optionally the COB-ID of a COB

Definition for which the verification failed and optionally a reason is confirmed.

Get Checksum

Parameter Request/Indication Response/Confirm

Argument

 scope

 Node_ID

 all

Remote Result

 success

 checksum

 failure

 reason

Mandatory

 mandatory

 selection

 selection

Mandatory

 selection

 mandatory

 selection

 optional

Through this service, a DBT slave requests the DBT Master to calculate a checksum.

The value of the checksum depends on the requested scope and equals either:

• the remainder of the whole division by 8191 of the sum of the COB-ID's of all

COB Definitions in the COB Database that have at least one User Definition

• the remainder of the whole division by 8191 of the sum of the COB-ID's of the

COB Definitions whose user set contains a User Definition created by the user

identified by Node_ID.

The service is confirmed and mandatory. The Remote Result parameter will confirm the

success or failure of the verification. In case of failure, optionally the reason is confirmed.

February 1996

DBT Service Specification

- DS204-1 p. 14 -

ANNEX I

COB Identifier Table

The COB-ID table in Fig. 3 describes the usage of the COB identifiers by the protocols of the

CAN Application Layer for Industrial Automation.

NMT start/stop services 0

CMS objects priority 0 1-220

 .

 .
 .
 .

CMS objects priority 7 1541-1760

NMT Node Guarding Protocol 1761-2015

reserved for further use by CiA 2016-2019

LMT Services 2020

LMT Services 2021

NMT Identify Node Protocol 2022

DBT services 2023

DBT services 2024

NMT services 2025

NMT services 2026

reserved for module self-test 2027

reserved for further use by CiA 2028-2031

Fig. 3: The COB-ID Table

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS204-2

February 1996

DBT Protocol Specification

February 1996

DBT Protocol Specification

- DS204-2 p. 2 -

1. SCOPE

This document contains the protocol specification of the Distributor (DBT). DBT is

part of the CAN Application Layer. This document is part of a set of documents that

standardize the CAN Application Layer for Industrial Applications.

2. REFERENCES

/1/: CiA/DS201, CAN Reference Model

/2/: CiA/DS204-1, DBT Service Specification

/3/: CiA/DS207, Application Layer Naming Conventions

/4/: Robert Bosch GmbH, CAN Specification 2.0 Part B, September 1991

3. GENERAL DESCRIPTION

3.1 DBT Protocol Perspective

The Distributor (DBT) service element in the CAN Reference Model (see /1/), provides

the DBT services. The DBT Protocol is executed between the DBT Master and each of the

DBT Slaves (see /2/) to implement these services.

3.2 DBT Slave Synchronization

Since in the DBT Protocol all DBT Slaves use the same COB to send information to

the DBT Master, there must be only one DBT Slave at a time that communicates with the

DBT Master. This synchronization between the DBT Slaves is established by the NMT service

element of the CAN Application Layer, see /1/.

3.3 DBT Protocol Descriptions

A protocol description specifies the sequence of COB's and their format that are

exchanged between the DBT Master and DBT Slave for a particular DBT service.

In the description of the COB data format, bytes are numbered from 0 to and including

7. Bits within a byte are numbered from 0 to and including 7. Byte 0 is transmitted first, byte 7

is transmitted last. Within a byte, bit 0 is the least significant bit, bit 7 is the most

February 1996

DBT Protocol Specification

- DS204-2 p. 3 -

significant bit. In the protocol descriptions, [a, b] denotes the range of integers from a to b

with a and b included. If a > b, the range is empty.

The terms 'lsb' and 'msb' stand for 'least significant byte' (lsb) and 'most significant byte'

(msb) respectively and are used to define how an integer number is stored in more than one

byte for the DBT Protocol. The order of significance is from lsb to msb.

February 1996

DBT Protocol Specification

- DS204-2 p. 4 -

4. DISTRIBUTION CONTROL PROTOCOLS

4.1 Create User Definition Protocol

This protocol is used to implement the 'Create User Definition' service, see /2/.

• cs: DBT command specifier

 2: COB name first part command

 3: COB name last part command

 4: COB attribute command

February 1996

DBT Protocol Specification

- DS204-2 p. 5 -

• COB-name first part: the first seven characters of the COB-name, see /3/.

• COB-name last part: the last seven characters of the COB-name, see /3/.

• min. inhibit-time: only valid if status = 0, otherwise reserved for further use by

CiA. If valid it contains the value of the minimum inhibit-time attribute of the

selected COB Definition, see /2/. If there is no COB definition in the COB

Database whose user set or predefinition set contains a User Definition

respectively a Predefinition for COB-name, its value must be 0

• act. inhibit-time: the value of the inhibit-time attribute of the User Definition, in

units of 100 usec, see /2/.

• Node-ID: the value of the Node-ID attribute of the User Definition, see /2/.

• COB-length: the value of the COB-length attribute of the User Definition, see

/2/.

• COB-class: the value of the COB-class attribute of the User Definition, see /2/.

• COB-type: the value of the COB-type attribute of the User Definition, see /2/.

 0: RECEIVE

 1: TRANSMIT

• req. priority: a value in the range [0, 7]. It indicates the priority of the CMS

object that uses this COB for the CMS Protocol, see /2/.

• status: indicates the succes or failure of the service.

 0: service successful

 1: service not successful

• error code: only valid if status = 1, otherwise reserved for further use by CiA. If

valid it indicates the reason for the failure.

0: reserved for further use by CiA

1: there are no matching, no offending and no free COB

definitions in the COB Database

2: COB Database is in the DISABLED state, see /2/

3: there exists an offending COB Definition whose predefinition-

or user set contains a definition with the same COB-name

but whose user set contains definitions with a different

COB-class, see /2/

4: there exists an offending COB Definition whose predefinition-

or user set contains a definition with the same COB-name

but whose user set contains definitions with a different

COB-length, see /2/

5: reserved for other DBT services

February 1996

DBT Protocol Specification

- DS204-2 p. 6 -

6..253: reserved for further use by CiA

254: cs not expected by DBT Protocol

255: other error occurred

• COB-ID: only valid if status = 0, otherwise reserved for further use by CiA. If

valid it contains the identifier as distributed by the DBT Master

• reserved for ext. COB-ID: reserved to contain the value of the COB-ID if

extended identifiers are used, see /4/. Its value must be 0.

• ass. priority: only valid if status = 0, otherwise reserved for further use by CiA.

If valid it contains the priority of the CMS object according to the COB-ID as

distributed by the DBT Master, see /2/.

• reserved: reserved for further use by CiA.

4.2 Delete User Definition Protocol

This protocol is used to implement the 'Delete User Definition' service, see /2/.

• cs: DBT command specifier

 0: delete COB command

• Node-ID: the value of the Node-ID attribute of the User Definitions that must be

deleted (see /2/), or 0. If 0, all User Definitions must be deleted.

• status: indicates the success or failure of the service.

 0: service successful

 1: service not successful

February 1996

DBT Protocol Specification

- DS204-2 p. 7 -

• error code: only valid if status = 1, otherwise reserved for further use by CiA. If

valid it indicates the reason for the failure.

0: reserved for further use by CiA

1: reserved for other DBT services

2: COB Database is in the DISABLED state, see /2/

3..5: reserved for other DBT services

6..253: reserved for further use by CiA

254: reserved for other DBT services

255: other error occurred

• reserved: reserved for further use by CiA.

February 1996

DBT Protocol Specification

- DS204-2 p. 8 -

5. CONSISTENCY CONTROL PROTOCOLS

5.1 Verify COB Class Protocol

This protocol is used to implement the 'Verify COB Class' service, see /2/.

• cs: DBT command specifier

 5: verfify COB class command

• status: indicates the success or failure of the service.

 0: service successful

 1: service not successful

• error code: Only valid if status = 1, otherwise reserved for further use by CiA. If

valid it indicates the reason for the failure.

0: reserved for further use by CiA

1: reserved for other DBT services

2: COB database is in the DISABLED state, see /2/

3..4: reserved for other DBT services

5: verification failed

6..253: reserved for further use by CiA

254: reserved for other DBT services

255: other error occurred

• COB-ID: only valid if status = 1, otherwise reserved for further use by CiA. If

valid it contains an identifier for which the verification failed.

February 1996

DBT Protocol Specification

- DS204-2 p. 9 -

• reserved for ext. COB-ID: reserved to contain the value of a COB-ID for which

the verification failed, if extended identifiers are used, see /4/. Its value must be 0.

• reserved: reserved for further use by CiA.

5.2 Get Checksum Protocol

This protocol is used to implement the 'Get Checksum' service, see /2/.

• cs: DBT command specifier

 6: get checksum command

• Node-ID: the value of the Node-ID attribute of the User Definitions for which

the checksum must be calculated (see /2/), or 0. If 0, the checksum must be

calculated for all User Definitions.

• status: indicates the success or failure of the service.

 0: service successful

 1: service not successful

• error code: only valid if status = 1, otherwise reserved for further use by CiA. If

valid it indicates the reason for the failure.

0: reserved for further use by CiA

1: reserved for other DBT services

2: COB Database is in the DISABLED state, see /2/

3..5: reserved for other DBT services

6..253: reserved for further use by CiA

254: reserved for other DBT services

255: other error occurred

February 1996

DBT Protocol Specification

- DS204-2 p. 10 -

• checksum: only valid if status = 0, otherwise reserved for further use by CiA. If

valid it contains the requested checksum.

• reserved: reserved for further use by CiA.

February 1996

DBT Protocol Specification

- DS204-2 p. 11 -

ANNEX I

IMPLEMENTATION RULES

When implementing the DBT protocols, the following rules have to be followed to

guarantuee inter-operability. These rules deal with the following implementation aspects:

Invalid COB's

A COB is invalid if it has a COB-ID that is used by the DBT Protocol, but it contains

invalid parameter values according to the DBT Protocol. This can only be caused by errors in

the lower layers (see /1/) or implementation errors. Invalid COB's must be handled locally in

an implementation specific way that does not fall within the scope of the CiA Standard on the

CAN Application Layer for Industrial Applications. As far as the DBT Protocol is concerned,

an invalid COB must be ignored.

Time-out's

Since COB's may be ignored, the response of a confirmed DBT service may never

arrive. To resolve this situation, an implementation may, after a certain amount of time,

indicate this to the service user (time-out). A time-out is not a confirm of that DBT service.

A time-out indicates that the service has not completed yet. The application must deal with this

situation. Time-out values are considered to be implementation specific and do not fall within

the scope of the CiA Standard on the CAN Application Layer for Industrial Applications.

However, it is recommended that an implementation provides facilities to adjust these time-out

values to the requirements of the application.

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS205-1

February 1996

LMT Service Specification

February 1996

LMT Service Specification

- DS205-1 p. 2 -

1. SCOPE

This document contains the Layer Management Service Specification. This document is

part of a set of documents that standardize the CAN Application Layer for Industrial

Applications.

2. REFERENCES

/1/: CiA/DS201, CAN in the OSI Reference Model

/2/: CiA/DS205-2, LMT Protocol Specification

/3/: CiA/DS207, Application Layer Naming Conventions

/4/: CiA/DS102, Version 2.0, CAN Physical Layer for Industrial Applications

3. GENERAL DESCRIPTION

3.1 LMT Perspective

LMT is one of the application layer entities in the CAN Reference Model (see /1/).

LMT offers the possibility to inquire and change the settings of certain parameters of the local

layers on a CAN module with LMT Slave capabilities by a CAN module with LMT Master

capabilities via the CAN Network.

The following parameters can be inquired and/or changed by the use of LMT:

• NMT-address of the NMT Service Element

• bit timing parameters of the physical layer

• LMT address

By using LMT a LMT Slave can be configured for a CAN network without using any devices

like DIP-switches for setting the parameters. There are several solutions available for LMT

Slaves with and without a unique LMT-address or non-volatile storage.

February 1996

LMT Service Specification

- DS205-1 p. 3 -

3.2 LMT Objects and Attributes

LMT functionality is modelled using two objects (see figure 1). The LMT Master

object exists exactly once in a CAN network supporting LMT. The LMT Master configures

layer parameters of connected CAN modules by the use of LMT Slave objects residing on the

individual modules.

Communication between LMT Master and LMT Slaves is accomplished by the LMT protocol.

Fig. 1: The LMT Model

3.2.1 LMT Master Object

The module that configures other modules via a CAN network is called the LMT

Master. There may be only one LMT Master in a network.

The LMT Master has no attributes.

February 1996

LMT Service Specification

- DS205-1 p. 4 -

3.2.2 LMT Slave Object

The module that is configured by the LMT Master via a CAN Network is called the LMT

Slave. The number of LMT Slaves in a network is not limited.

The LMT Slave has the following attributes:

• LMT Address

The LMT address uniquely identifies a LMT Slave. The format of the LMT address is

specified in the 'Application Layer Naming Conventions' (see /3/). The LMT address of a

LMT Slave can be inquired. It is valid only for LMT Slaves of class 2.

• LMT Class

Each LMT class indicates the LMT capabilities that are available on a LMT-Slave.

Class 0: No LMT Services are implemented.

Class 1: All LMT Services with exception of Switch Mode Selective and Inquire

LMT Address, Identify Remote Slaves, Identify Slaves are implemented.

Class 2: All mandatory LMT Services are implemented.

• LMT Mode

The LMT mode distinguishes between the LMT configuration phase and the operation

phase of the module. In configuration mode all LMT services, in operation mode only

the switch mode services are available. Any module not explicitly put into configuration

mode is in operation mode.

February 1996

LMT Service Specification

- DS205-1 p. 5 -

3.3 LMT Modes and Services

LMT services can be functionally grouped in three areas:

• The switch mode services provide a way to logically connect the LMT Master and LMT

Slave(s) for configuration purposes. They change the LMT mode attribute of the LMT

Slave (see figure 2).

• The configuration services perform the actual task of configuring the layer parameters of an

LMT Slave. The configuration services are only available in configuration mode.

• The inquiry services provide a way for the LMT Master to determine layer parameters. The

inquiry services are available only in configuration mode.

Configuration

 Mode

Switch Mode Global

with parameter

operation_mode

Switch Mode Global

with parameter

configuration_mode

Switch Mode Selective

with matching LMT-

address parameter

Operation

 Mode

Fig. 2: LMT modes and switching procedure

3.4 LMT Service Descriptions

The LMT services are described in a tabular form that contains the parameters of each

service primitive (see /1/).

February 1996

LMT Service Specification

- DS205-1 p. 6 -

4. SWITCH MODE SERVICES

The Switch Mode Services control the mode attribute of a LMT Slave. LMT provides

two ways to put a LMT Slave into configuration mode, Switch Mode Global and Switch Mode

Selective. Switch Mode Selective switches exactly one LMT-Slave into configuration mode.

Switch Mode Global switches all LMT Slaves into configuration mode.

Some LMT configuration and inquiry services require that only one LMT Slave is in

configuration mode. To execute these services for a class 1 LMT Slave requires that only one

LMT Slave is in the network.

Besides the LMT Switch Mode Services there may be other (local and module specific)

means to change the mode of an LMT Slave, that are not within the scope of the CiA Standard

on the CAN Application Layer for Industrial Applications.

4.1 Switch Mode Global

This service is used to switch all LMT Slaves in the network between operation mode

and configuration mode.

Parameter Request/Indication

Argument

 mode

 configuration_mode

 operation_mode

Mandatory

 mandatory

 selection

 selection

This service is unconfirmed and mandatory for LMT class 1 and class 2 slaves.

4.2 Switch Mode Selective

This service is used to switch the class 2 LMT Slave, whose LMT address attribute

equals LMT_address, into configuration mode.

Parameter Request/Indication

Argument

 LMT_address

Mandatory

 mandatory

This service is unconfirmed and mandatory for LMT class 2 slaves.

February 1996

LMT Service Specification

- DS205-1 p. 7 -

5. CONFIGURATION SERVICES

The configuration services are available only in configuration mode. Some of the

services require that exactly one LMT Slave is in configuration mode.

5.1 Configure NMT Address

Through this service the LMT Master configures the NMT-address parameter of a

LMT Slave.

Parameter Request/Indication Response/Confirmation

Argument

 NMT-addressNMT

 module_name

 module_ID

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 selection

 selection

Mandatory

 selection

 selection

 optional

This service allows only one LMT Slave in configuration mode. This service is

confirmed and mandatory for LMT class 1 and class 2 slaves. The remote result parameter

confirms the success or failure of the service. In case of a failure optionally the reason is

confirmed.

5.2 Configure Bit Timing Parameters

Through the Configure Bit Timing Parameters service the LMT Master sets the new bit

timing on a LMT Slave.

Parameter Request/Indication Response/Confirmation

Argument

 table_selector

 table_index

Remote Result

 success

 failure

 reason

Mandatory

 mandatory

 mandatory

Mandatory

 selection

 selection

 optional

February 1996

LMT Service Specification

- DS205-1 p. 8 -

By means of the table_selector the bit timing parameter table to be used is specified. In

the bit timing parameter table the bit timing parameters for different baud rates are specified.

With table_selector value ´0´ the standard CiA bit timing parameter table is referenced (see

/4/). The table_index selects the entry (baud rate) in the selected table.

This service allows only one LMT Slave in configuration mode. The service has to be

followed by an Activate Bit Timing Parameters service to activate the configured parameters.

After execution of the Configure Bit Timing Parameters service the node may not execute any

remote CAL services except the services Configure Bit Timing Parameters, Activate Bit

Timing Parameters and Switch Mode.

This service is confirmed and mandatory for LMT class 1 and class 2 slaves. The

remote result parameter confirms the success or failure of the service. In case of a failure

optionally the reason is confirmed.

5.3 Activate Bit Timing Parameters

Through the Activate Bit Timing Parameters service the LMT Master activates the bit

timing as defined by the Configure Bit Timing Parameters service.

Parameter Request/Indication

Argument

 switch_delay

Mandatory

 mandatory

The switch_delay parameter specifies the length of two delay periods of equal length,

which are necessary to avoid operating the bus with differing bit timing parameters. Each node

performs the actual switch of the bit timing parameters ´switch_delay´ milliseconds after the

reception of the command. After performing the switch, a node does not transmit any

messages before the second time ´switch_delay´ has passed.

This service is unconfirmed and mandatory for LMT class 1 and class 2 slaves.

Note

Nodes may have different processing times for performing the Activate Bit Timing

Parameters command and messages that are transmitted before this command may still be in

the receive queue of a node. This means that a node may still transmit CAN messages with the

old bit timing during the duration of the processing delay. Therefore switch_delay has to be

longer than the longest processing time of any node in the network to avoid that a node already

switches while another node still transmits using the old bit timing parameters. After the time

specified by switch_delay has passed the first time, every node must perform the switch during

February 1996

LMT Service Specification

- DS205-1 p. 9 -

the second duration of switch_delay. Therefore after switch_delay has passed the second time,

all nodes are guaranteed to be listening with the new bit timing parameters. The diagram in

figure 3 shows the location of the two switch_delay periods.

.......................

.....

.....

Fig. 3: Definition of the two switch_delay periods

5.4 Store Configured Parameters

The Store Configured Parameters service is used to actuially store the configured

parameters into non-volatile storage.

Parameter Request/Indication Response/Confirmation

Argument

Remote Result

 success

 failure

 reason

Mandatory

Mandatory

 selection

 selection

 optional

This service is confirmed and mandatory for LMT class 1 and class 2 slaves. The

remote result parameter confirms the success or failure of the service. In case of a failure

optionally the reason is confirmed.

February 1996

LMT Service Specification

- DS205-1 p. 10 -

6. INQUIRY SERVICES

The inquiry services are available only in configuration mode.

6.1 Inquire LMT Address

This service allows to determine the LMT-address parameters of a LMT Slave in

configuration mode.

Parameter Request/Indication Response/Confirmation

Argument

Remote Result

 LMT_address

 manufacturer name

 product name

 serial number

 failure

 reason

Mandatory

Mandatory

 selection

 mandatory

 mandatory

 mandatory

 selection

 optional

Exactly one LMT slave may be in configuration mode when this service is executed.

This service is confirmed and mandatory for LMT class 2 slaves. The remote result parameter

confirms the LMT address of the LMT Slave in configuration mode or the failure of the

service. In case of a failure optionally the reason is confirmed.

7. Identification Services

7.1 LMT Identify Remote Slaves

Through this service, the LMT Master requests all LMT slaves, whose LMT address

meets the LMT_Address_selection to identify themselves through the 'LMT Identify Slave'

service. LMT_Address_sel consists of a fixed manufacturer and product name and a span of

serial numbers. This service is unconfirmed and mandatory for LMT Nodes with Class 2.

Parameter Request/Indication

Argument

 LMT_Address_sel

Mandatory

 mandatory

February 1996

LMT Service Specification

- DS205-1 p. 11 -

7.2 LMT Identify Slave

Through this service, an LMT Slave indicates, that it is a Slave with an LMT address

within the LMT_Address_sel of an 'LMT Identify Remote Slave' service executed prior to this

service. The service is unconfirmed and mandatory for LMT Nodes with Class 2.

Parameter Request/Indication

Argument Mandatory

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS205-2

February 1996

LMT Protocol Specification

February 1996

LMT Protocol Specification

- DS205-2 p. 2 -

1. SCOPE

This document contains the protocol specification of the Layer Management (LMT).

LMT is part of the CAN Application Layer. This document is part of a set of documents that

standardize the CAN Application Layer for Industrial Applications.

2. REFERENCES

/1/: CiA/DS201, CAN in the OSI Reference Model

/2/: CiA/DS205-1, LMT Service Specification

/3/: CiA/DS207, Application Layer Naming Conventions

/4/: CiA/DS102, Version 2.0, CAN Physical Layer for Industrial Applications

3. GENERAL DESCRIPTION

3.1 LMT Protocol Perspective

The Layer Management (LMT) service element in the CAN Reference Model (see /1/)

provides the LMT services. The LMT Protocol is executed between the LMT Master and each

of the LMT Slaves (see /2/) to implement these services.

3.2 LMT Slave Synchronisation

Since in the LMT Protocol all LMT Slaves use the same COB to send information to

the LMT Master, there must be only one LMT Slave at a time that communicates with the

LMT Master. For all protocols the LMT Master takes the initiative, a LMT Slave is only

allowed to transmit within a confirmed service after it has been uniquely switched into

configuration mode. Since there can be atmost one confirmed LMT service outstanding at a

time (see /2/), the synchronisation is established.

3.3 LMT Protocol Descriptions

A protocol description specifies the sequence of COB's and their format that are

exchanged between the LMT Master and LMT Slave(s) for a particular LMT service.

LMT uses command specifiers to identify the commands. Command specifiers from 0 -

07fh are reserved for use by standard LMT services. Command specifiers from 080h - 0ffh are

free for application specific purposes and may only be used with at most one LMT Slave in

configuration mode.

February 1996

LMT Protocol Specification

- DS205-2 p. 3 -

In the description of the COB data format, bytes are numbered from zero to and

including seven. Bits within a byte are numbered from zero to and including seven. Byte zero is

transmitted first, byte seven is transmitted last. Within a byte, bit zero is the least significant bit,

bit seven is the most significant bit.

The terms 'lsb' and 'msb' stand for 'least significant byte' and 'most significant byte'

respectively and are used to define how an integer number is represented in more than one byte

for the LMT Protocol. The order of significance is increasing from lsb to msb.

February 1996

LMT Protocol Specification

- DS205-2 p. 4 -

4. SWITCH MODE PROTOCOLS

4.1 Switch Mode Global

This protocol is used to implement the Switch Mode Global service.

• cs: LMT command specifier

 04 for Switch Mode Global

• mode: The LMT mode to switch to:

 0: switches to operation mode

 1: switches to configuration mode

• reserved: reserved for further use by CiA.

4.2 Switch Mode Selective

This protocol is used to implement the Switch Mode Selective service.

• cs: LMT command specifiers

 01 to 03 for Switch Mode Selective

• manufacturer_name: The manufacturer name part of the LMT address, see /3/

• product_name: The product name part of the LMT address, see /3/

February 1996

LMT Protocol Specification

- DS205-2 p. 5 -

• serial_number: The serial number part of the LMT address, see /3/

5. CONFIGURATION PROTOCOLS

5.1 Configure NMT Address Protocols

Configure Module ID Protocol

This protocol is used to implement the Configure NMT Address service for the

module-ID part of the NMT address.

• cs: LMT command specifier

 17 for Configure Module ID

• MId: The new module_id to configure, see /3/

• error_code:

 0: protocol successfully completed

 1 ... 254: reserved for further use by CiA

 255: implementation specific error occured.

• specific_error_code: If error_code equals 255, specific_error_code gives an

implementation specific error code, otherwise it is reserved for further use by

CiA.

• reserved: reserved for further use by CiA

Configure Module Name Protocol

This protocol is used to implement the Configure NMT Address service for the

module-name part of the NMT address.

February 1996

LMT Protocol Specification

- DS205-2 p. 6 -

• cs: LMT command specifier

 18 for Configure Module Name

• module_name: the new module_name to configure, see /3/

• table_index: index for the bit timing to use.

• error_code:

 0: protocol successfully completed

 1 . . 254: reserved for further use by CiA

 255: implementation specific error occured

• specific_error_code: If error_code equals 255, specific_error_code gives an

implementation specific error code, otherwise it is reserved for further use by

CiA.

• reserved: reserved for further use by CiA.

5.3 Configure Bit Timing Parameters Protocol

This protocol is used to implement the 'Configure Bit Timing Parameters' service

• cs: LMT command specifier

February 1996

LMT Protocol Specification

- DS205-2 p. 7 -

 19 for Configure Bit Timing Parameters

• table_selector: selects which bit timing parameters table has to be used

 0: standard CiA bit timing table (see /4/)

 1..127: reserved for further use by CiA

 128..255: may be used for manufacturer specific bit timings

• table_index: selects the entry (bit timeing parameters) in the selected table;

see /4/ for valid indices when using the standard CiA bit timings

(table_selector = '0')

• error_code:

 0: protocol successfully completed

 1: bit timing not supported

 2..254: resrerved for further use by CiA

 255: implementation specific error occured

• specific_error_code: if error_code equals 255, specific_error_code gives an

implementation specific error code, otherwise it is reserved for further use by

CiA.

• reserved: reserved for further use by CiA.

5.4 Activate Bit Timing Parameters Protocol

This protocol is used to implement the Activate Bit Timing Parameters service.

• cs: LMT command specifier

21 for Activate Bit Timing Parameters

• switch_delay: The duration of the two periods of time to wait until the bit

timing parameters switch is done (first period) and before transmitting any CAN

message with the new bit timing parameters after performing the switch

(second period) The time unit of switch delay is 1 ms.

• reserved: reserved for further use by CiA.

February 1996

LMT Protocol Specification

- DS205-2 p. 8 -

5.5 Store Configuration Protocol

This protocol is used to implement the Store Configured Parameters service.

• cs: LMT command specifier

 23 for Store Configuration

• error_code:

 0: protocol successfully completed,

 1: store configuration is not supported,

 2 . . 254: reserved for further use by CiA,

 255: implementation specific error occured.

• specific_error_code: If error_code equals 255, specific_error_code gives an

implementation specific error code, otherwise it is reserved for further

use by CiA.

• reserved: reserved for further use by CiA.

February 1996

LMT Protocol Specification

- DS205-2 p. 9 -

6. INQUIRY PROTOCOLS

6.1 Inquire LMT Address Protocols

These protocols are used to implement the Inquire LMT Address service. To

implement the service, each of the following three protocols has to be executed.

Inquire Manufacturer Name Protocol

• cs: LMT command specifier

 36 for Inquire Manufacturer Name

• M1 - M7: The manufacturer_name (see /3/) of the selected module or error

code. If M1 is a valid <alpha-num>, the response contains the name. If M1 is

0ffh, M2 contains the error code, M3 contains the reason if valid for the error

code.

• reserved: reserved for further use by CiA.

Inquire Product Name Protocol

• cs: LMT command specifier

 37 for Inquire Product Name

February 1996

LMT Protocol Specification

- DS205-2 p. 10 -

• P1 - P7: The product_name (see /3/) of the selected module or error code. If P1

is a valid <alpha-num>, the response contains the name. If P1 is 0ffh, P2

contains the error code, P3 contains the reason if valid for the error code.

• reserved: reserved for further use by CiA.

Inquire Serial-Number Protocol

• cs: LMT command specifier

 38 for Inquire Serial Number

• S1 - S7: The serial_number (see /3/) of the selected module or error code. If S1

contains a valid BCD-pair (see /3/), the response contains the serial number. If

S1 is 0ffh, S2 contains the error code, S3 contains the reason if valid for the

error code.

• reserved: reserved for further use by CiA.

February 1996

LMT Protocol Specification

- DS205-2 p. 11 -

7. IDENTIFICATION PROTOCOLS

7.1 LMT Identify Remote Slaves

This protocol is used to implement the 'LMT Identify Remote Slaves' service.

• cs: LMT command specifier

 05 to 08 for LMT Identify Remote Slaves

• manufacturer_name: The manufacturer name part of the LMT Address

• product_name: The product name part of the LMT Address

• serial_number_low: The lower boundary of the requested serial numbers range

• serial_number_high: The higher boundary of the requested serial numbers

range

The boundaries are included in the interval. All LMT Slaves with matching

manufacturer name and product name whose serial numbers lie within this range, are requested

to identify themselves with the LMT Identify Slave service.

February 1996

LMT Protocol Specification

- DS205-2 p. 12 -

7.2 LMT Identify Slave Protocol

This protocol is used to implement the 'LMT Identify Slave' service.

COB-ID = 2020

LMT Slave

cs=09 reserve dcs=09 reserve d

0 1 8

LMT Identify Slave
LMT Master

• cs: LMT command specifiers

 09 for Identify Slave

• reserved: all bytes set to '0'

February 1996

LMT Protocol Specification

- DS205-2 p. 13 -

ANNEX I

IMPLEMENTATION RULES

When implementing the LMT protocols, the following rules have to be followed to guarantee

inter-operability. The rules deal with the following implementation aspects:

Invalid COBs

A COB is invalid if it has a COB-ID that is used by the LMT Protocol, but contains invalid

parameter values according to the LMT Protocol. This can be caused by errors in the lower

layer (see /1/) or implementaton errors. Invalid COBs must be handled locally in an

implementation specific way that does not fall within the scope of the CiA Standard on the

CAN Application Layer for Industrial Applications. As far as the LMT Protocol is concerned,

an invalid COB must be ignored.

Time-Outs

Since COBs may be ignored, the response of a confirmed LMT service may never arrive. To

resolve this situation, an implementation may, after a certain amount of time, indicate this to

the service user (time-out). A time-out is not a confirm of the LMT service. A time-out

indicates that the service has not completed yet. The application must deal with this situation.

Time-out values are considered to be implementation specific and do not fall within the scope

of the CiA Standard on the CAN Application Layer for Industrial Applications. However, it is

recommended that an implementation provides facilities to adjust these time-out values to the

requirements of the application.

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS206

February 1996

Recommended Standard CAL Module Data Sheet

February 1996

Recommended Standard CAL Module Data Sheet

- DS206 p. 2 -

1. SCOPE

This document contains a description of a recommended standard for a CAL module

data sheet. This document is part of a set of documents that standardize the CAN Application

Layer for Industrial Applications.

2. REFERENCES

/1/: CiA/DS201, CAN Reference Model

/2/: CiA/DS202-1, CMS Service Specification

/3/: CiA/DS203-1, NMT Service Specification

/4/: CiA/DS204-1, DBT Service Specification

/5/: CiA/DS205-1, LMT Service Specification

/6 /: CiA/DS207, Application Layer Naming Conventions

February 1996

Recommended Standard CAL Module Data Sheet

- DS206 p. 3 -

3. GENERAL DESCRIPTION

3.1 Perspective

The purpose of the recommended standard module data sheet is the provision of a

standard description format for the complete specification of CAL-based modules in non-

standardized-profile (proprietary) applications.

The recommended Module Data Sheet consists of three parts and shall specify the

functionality of a module as accessible from the bus. This means that not only the

communication interface has to be specified but also the application specific functionality.

3.2 General Description of a Module (Part A)

This part specifies the module type, function, identification and capability by means of

the following information:

• Module Type

Free format specification of the module type

• Module Function

Textual description of the module function

• Specification of Module Capabilities

in terms of LMT-, NMT- and DBT node class according to CAL service

specification (see /3/, /4/, /5/). Specifies the supported LMT-, NMT- and DBT

services.

• LMT- Identification

manufacturer name, product name, serial number according to LMT naming

conventions (see /6/). Only valid if LMT class > 1

• NMT-Identification

module name, module-ID according to NMT naming conventions (see /6/).

February 1996

Recommended Standard CAL Module Data Sheet

- DS206 p. 4 -

3.3 Specification CMS Objects (Part B)

This part of the data sheet describes the supported CMS objects in terms of CMS

object attributes.

• Module relative CMS Object Number

beginning with 0

• CMS Object Name

according to CMS naming conventions;

for multiplexed Variables: Variable-Set-Name;

if the object names are given in fixed format notation then the last three digits of

the name representing the module ID must be written as ´xxx´ except when they

are set to ´000´.

• CMS Object Type

Variable or Domain or Event

• Class

Variable, Domain: basic, multiplexed;

Event: controlled, uncontrolled, stored

• Access Type

only valid for Variables (Write-only, Read-only, Read-Write)

• User Type

Client or Server

• Default Priority Group

according to CMS specification;

if the module does not provide a DBT slave but works with preset identifiers then

this column can be split into two colums to specify the assigned COBs: one

column for the transmit COB of the Client (C-Tx) and the other column for the

transmit COB of the Server (S-Tx) of the object;

• Default Inhibit Time

according to CMS specification (in units of 0.1 ms)

• MUX Value

according to CMS specification; only valid for Variables and Domains of class

multiplexed

• Message Component Number

specifies the component for constructed messages beginning with '0' for the first

component of the message

February 1996

Recommended Standard CAL Module Data Sheet

- DS206 p. 5 -

• Message Component Name

specifies the component name in free format

• Message Component Data Type

data type according to CMS specification of corresponding message component

• Error Data Type

data type of corresponding error message; only relevant for Variables with

confirmed data transfer (optional)

3.4 Specification of Module Functionality (Part C)

This part of the module data sheet specifies the module functionality.

• Object Number, MUX-Value, Message Component Number

for reference to sheet 2

• Meaning/Function

free format description of message components meaning or function

• Engineering Units

if relevant according to function of component

• Value Range

if relevant; e.g. valuable codes

• Default Value

initialization value

• Message Triggering Condition

specification of the component triggering condition if relevant, e.g. on-change,

on-threshold-exceeding, on error, cyclically (cycle time), etc.

• Error Coding

Specificaton of error codes, only valid for confirmed Variables

• Remarks

free format

February 1996

Recommended Standard CAL Module Data Sheet

- DS206 p. 6 -

Module Data Sheet - Part A

Module Type:

Module Function

Module Capabilities

LMT class [] NMT network class [] DBT class []

NMT node class []

Module Identification

Manufacturer Name

Product Name

Serial Number

Module Name

Module ID

February 1996

Recommended Standard CAL Module Data Sheet

- DS206 p. 7 -

Module Data Sheet - Part B

Module Type

Obj.

Nr.

Object Name Object

Type

Class Access

Type

User

Type

Default

Priority

Group

Default

Inhibit

Time

Mux

Value

Mess.

Comp.

Nr.

Message Comp. Name Message

Comp. data

Type

Error Data

Type

February 1996

Recommended Standard CAL Module Data Sheet

- DS206 p.8 -

Module Data Sheet - Part C

Module Type

Obj.

Nr.

Mux

Value

Mess.

Comp.

Nr.

Meaning, Function Eng. Unit Value, Range Default

Value

Message Triggering

Condition

Error

Coding

Remarks

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

CAN Application Layer for Industrial Applications

CiA/DS207

February 1996

Application Layer Naming Conventions

February 1996

Application Layer Naming Conventions

- DS207 p. 2 -

1. SCOPE

This document contains the naming conventions that apply to instances of the objects

that are defined by the service elements of the CAN Application Layer. This document is part

of a set of documents that standardize the CAN Application Layer for Industrial Applications.

2. REFERENCES

/1/: CiA/DS201, CAN Reference Model

3. GENERAL DESCRIPTION

3.1 Naming Conventions Perspective

The CAN Application Layer (see /1/) offers an open CAN network where modules

from different suppliers cooperate in a distributed application. To this purpose, the service

elements of the CAN Application Layer (see /1/) model their functionality through the use of

objects. Applications can create instances of those objects identified by a name. These names

have a network-wide scope. Applications that want to execute remote services via the network

on such an object must know its name and this name must identify the object.

3.2 Symbolic Name

A symbolic name is built according to the following syntax rules:

<symb-name> ::= { <alpha-num> | <special> }

<alpha-num> ::= 'A' | ... | 'Z' | 'a' | ... | 'z' | '_' | <num>

<num> ::= '0' | ... | '9'

<special> ::= '#'

If a symbolic name is transferred via the CAN network, each character is transferred in

one data byte of the COB as an 8-bit unsigned integer, whose value is the ASCII code of that

character. The bits in this byte are transferred most significant bit first. The character sequence

is transmitted from left to right. Symbolic names are case sensitive.

February 1996

Application Layer Naming Conventions

- DS207 p. 3 -

3.3 Byte Selector

A byte selector is a non-negative integer that can assume the following values:

<byte-selector> ::= 1 | ... | 255

If a selector is transferred via the CAN network, it is transferred in one data byte of the

COB as an 8-bit unsigned integer, whose value equals the value of the selector. The bits in this

byte are transferred most significant bit first.

3.4 BCD Number

A BCD number is built according to the following syntax rules:

<bcd-num> ::= { <bcd-pair> }

<bcd-pair> ::= <bcd-digit-1><bcd-digit-0>

<bcd-digit-1> ::= <bcd-digit>

<bcd-digit-0> ::= <bcd-digit>

<bcd-digit> ::= 0 | ... | 9

If a BCD number is transferred via the CAN network, each BCD pair is transferred in

one data byte of the COB as an 8-bit unsigned integer, whose value is defined as

16*<bcd-digit-1> + <bcd-digit-0>. The bits in this byte are transferred most significant bit first.

The sequence is transmitted from left to right. A <bcd-pair> represents the value

10*<bcd-digit-1> + <bcd-digit-0>.

February 1996

Application Layer Naming Conventions

- DS207 p. 4 -

4. CMS NAMING CONVENTIONS

4.1 Purpose

CMS is one of the service elements of the CAN Application Layer, see /1/. CMS

defines a number of objects and remote services on these objects. In order to implement the

remote services two (or more) peer CMS entities have to exchange information using a

protocol. Such a protocol uses COB's each with a unique COB-ID, to transfer the protocol

data. Such A COB-ID uniquely identifies the CMS object. All clients and servers of a CMS

object must use the same COB-ID for the COB's used by the protocol of that CMS object.

In the CAN Application Layer the COB-ID's of CMS objects may be distributed by the

Distributor service element (DBT, see /1/). The DBT distributes COB-ID's based on the names

of the COB's used by the protocol of that CMS object. The CMS naming conventions serve to

control the distribution of COB-ID's by the DBT.

4.2 CMS Object Name Syntax

A CMS object name is a symbolic name. The Client(s) and Server(s) of a CMS object

do not necessarily use the same name for an object. The DBT service element has the

possibility to 'link' these names to the same CMS object.

The name of a CMS object must adhere to the following syntax:

<CMS_obj_name> ::= <fix-format-name> | <free-format-name>

<fix-format-name> ::= <CMS-prof-ID> <appl-spec-name> <CMS-node-ID>

<CMS-prof-ID> ::= { <alpha-num> }3

<appl-spec-name> ::= { <alpha-num> }7

<CMS-node-ID> ::= { <num> }3

<free-format-name> ::= '#' { <alpha-num> }12

All CMS object names consist of thirteen characters. All names that start with a '#' are

free format names. Names that do not start with a '#' are names whose format is fixed by CiA.

The <CMS-prof-ID> is a sequence of three alpha-numeric characters. It indicates the

profile-ID or application type of the CMS object. Profile-ID's are assigned and registered by

the CiA. The profile-ID "000" is to be used by CMS objects that do not belong to a registered

profile.

February 1996

Application Layer Naming Conventions

- DS207 p. 5 -

The <appl-spec-name> is a sequence of seven alpha-numeric characters and can be

chosen freely by the application unless further conventions are defined for a certain profile-ID.

The <CMS-node-ID> is a sequence of three alpha-numeric characters that represents

synbolically, from left to right, the value of the Node-ID of the NMT Slave where the CMS

object is used. The Node-ID of a module is defined by the NMT Service Element, see /1/. A

<CMS-node-ID> equal to "000" may be used to generate CMS object names that are

independent from the Node-ID of the NMT Slave where they are used.

4.3 COB Name Syntax

A COB name is a symbolic name consisting of fourteen characters. The names of the

COB's that are used by a protocol of a CMS object are defined by the following rules:

• If the protocol of a CMS object requires one COB, the name of that COB is

equal to the name of that CMS object concatenated with the character 'X'.

• If the protocol of a CMS object requires two COB's, the COB transmitted from

Client to Server is equal to the name of that CMS object concatenated with the

character 'C'.

• If the protocol of a CMS object requires two COB's, the COB transmitted from

Server to Client is equal to the name of that CMS object concatenated with the

character 'S'.

<COB-name> ::= <X-COB-name> | <C-COB-name> | <S-COB-name>

<X-COB-name> ::= <CMS-name> 'X'

<C-COB-name> ::= <CMS-name> 'C'

<S-COB-name> ::= <CMS-name> 'S'

4.4 CMS Data Type Names

CMS Data Type Names are symbolic names for CMS Data Types. CMS Data Type

Names are not transferred via the CAN Network.

February 1996

Application Layer Naming Conventions

- DS207 p. 6 -

5. NMT NAMING CONVENTIONS

5.1 Purpose

The NMT naming conventions serve to identify the NMT objects that can be managed

via remote services on these objects.

5.2 NMT Object Name Syntax

Since there can be only one network object in a CAN network, it does not require a

name.

An NMT Slave is identified by an NMT-Address. An NMT-Address consists either of a

module-ID or of a module-name and a module-ID. A module name is a symbolic name. A

module-ID is a selector. They adhere to the following syntax:

<NMT-Address> ::= <module-name> <module-ID>|<module-ID>

<module-name> ::= { <alpha-num> }7

<module-ID> ::= <byte-selector>

An NMT-Address can be configured on an NMT Slave by the LMT Service Element

(see /1/) or by module specific means that do not fall within the scope of the CiA Standard on

the CAN Application Layer. For an NMT-Address at least one of the following conditions

must be met:

• there is no other NMT Slave in the network with the same <module-name>

• there is no other NMT Slave in the network with the same <module-ID>

February 1996

Application Layer Naming Conventions

- DS207 p. 7 -

6. LMT NAMING CONVENTIONS

6.1 Purpose

The LMT naming conventions serve to identify the LMT objects that can be managed

via remote services on these objects.

6.2 LMT Object Name Syntax

A class 2 LMT Slave is identified by an LMT-Address. An LMT Address consists of a

manufacturer-name, a product-name and a serial-number. The manufacturer-name and

product name are symbolic names. The serial-number is a BCD number. They adhere to the

following syntax:

<LMT-Address> ::= <manufacturer-name> <product-name> <serial-number>

<manufacturer-name> ::= { <alpha-num> }7

<product-name> ::= { <alpha-num> }7

<serial-number> ::= { <bcd-pair> }7

A <manufacturer-name> is assigned to module suppliers by CiA. A <product-name>

and a <serial-number> are assigned by the module supplier. For LMT-Addresses the following

condition must be met:

• there exists no other class 2 LMT Slave in the world with the same

<LMT-Address>

